Skip to main content
Glama

SAP OData to MCP Server

by Raistlin82
realtime-tools.ts37 kB
/** * Phase 3: Real-time Analytics & KPI Dashboard MCP Tools * 4 New MCP Tools for WebSocket streaming, KPI dashboards, and predictive analytics */ import { z } from 'zod'; import { Logger } from '../utils/logger.js'; import { RealtimeAnalyticsService } from '../services/realtime-analytics.js'; import { StreamSubscriptionSchema, KPIDashboardSchema, PredictiveAnalysisSchema, StreamingDataPoint, KPIDashboard, } from '../types/realtime-types.js'; import { DATA_RETENTION, ANALYTICS_INTERVALS } from '../constants/timeouts.js'; // Global instance of the real-time analytics service let realtimeService: RealtimeAnalyticsService | null = null; const logger = new Logger('RealtimeTools'); function getRealtimeService(): RealtimeAnalyticsService { if (!realtimeService) { realtimeService = new RealtimeAnalyticsService(); } return realtimeService; } // ===== TOOL 1: REAL-TIME DATA STREAMING ===== export class RealTimeDataStreamTool { public readonly name = 'realtime-data-stream'; public readonly description = 'Stream SAP data via WebSocket'; public readonly inputSchema = z.object({ action: z .enum(['start_server', 'stop_server', 'subscribe', 'unsubscribe', 'simulate', 'status']) .describe('Action to perform with WebSocket streaming'), entityType: z.string().optional().describe('SAP entity type to stream'), serviceId: z.string().optional().describe('SAP service ID'), subscriptionId: z.string().optional().describe('Subscription ID for unsubscribe'), frequency: z .enum(['realtime', 'high', 'medium', 'low']) .optional() .default('medium') .describe('Data streaming frequency'), filters: z.record(z.any()).optional().describe('Data filters'), port: z.number().optional().describe('WebSocket server port'), simulationCount: z .number() .optional() .default(10) .describe('Number of data points to simulate'), }); [key: string]: unknown; public async execute(args: z.infer<typeof this.inputSchema>): Promise<any> { logger.info('Starting real-time data streaming', { args }); const service = getRealtimeService(); try { switch (args.action) { case 'start_server': await service.startWebSocketServer(args.port); return { success: true, message: `WebSocket server started on port ${args.port || 8081}`, websocketUrl: `ws://localhost:${args.port || 8081}/realtime`, capabilities: [ 'Real-time data streaming', 'Subscription management', 'Data filtering and aggregation', 'Automatic reconnection support', ], }; case 'stop_server': await service.stop(); return { success: true, message: 'WebSocket server stopped', status: 'disconnected', }; case 'subscribe': if (!args.entityType || !args.serviceId) { throw new Error('entityType and serviceId are required for subscription'); } // In a real implementation, this would handle the subscription through WebSocket // For now, we'll return subscription details const subscriptionId = `sub_${Date.now()}_${Math.random().toString(36).substr(2, 6)}`; return { success: true, subscriptionId, subscription: { entityType: args.entityType, serviceId: args.serviceId, frequency: args.frequency, filters: args.filters, status: 'active', }, instructions: [ 'Connect to WebSocket server to receive real-time updates', `Use subscription ID: ${subscriptionId}`, 'Data will be streamed based on the specified frequency', ], }; case 'simulate': if (!args.entityType || !args.serviceId) { throw new Error('entityType and serviceId are required for simulation'); } service.simulateDataStream(args.entityType, args.serviceId, args.simulationCount); return { success: true, message: `Started simulating ${args.simulationCount} data points for ${args.entityType}`, simulation: { entityType: args.entityType, serviceId: args.serviceId, count: args.simulationCount, interval: '2 seconds', duration: `${args.simulationCount * 2} seconds`, }, }; case 'status': const status = service.getStatus(); return { success: true, status, server: status.isInitialized ? 'running' : 'stopped', summary: `${status.connections} active connections, ${status.subscriptions} subscriptions, ${status.insights} insights`, }; default: throw new Error(`Unknown action: ${args.action}`); } } catch (error: any) { logger.error('Real-time streaming error', { error: error.message }); return { success: false, error: error.message, action: args.action, troubleshooting: [ 'Ensure WebSocket server is started before subscribing', 'Check that entity types and service IDs are valid', 'Verify network connectivity and firewall settings', ], }; } } } // ===== TOOL 2: KPI DASHBOARD BUILDER ===== export class KPIDashboardBuilderTool { public readonly name = 'kpi-dashboard-builder'; public readonly description = 'Create and manage KPI dashboards'; public readonly inputSchema = z .object({ action: z.enum(['create', 'update', 'delete', 'list', 'get', 'refresh']), dashboardId: z .string() .optional() .describe('Dashboard ID (required for update/delete/get/refresh)'), dashboard: KPIDashboardSchema.optional().describe( 'Dashboard configuration (required for create)' ), updates: z.record(z.any()).optional().describe('Fields to update (for update action)'), includeData: z .boolean() .optional() .default(false) .describe('Include current KPI data in response'), }) .strict() .describe('KPI dashboard management'); [key: string]: unknown; public async execute(args: z.infer<typeof this.inputSchema>): Promise<any> { logger.info('Managing KPI dashboard', { action: args.action, dashboardId: args.dashboardId }); const service = getRealtimeService(); try { switch (args.action) { case 'create': if (!args.dashboard) { throw new Error('Dashboard configuration is required for create action'); } const dashboardId = `dashboard_${Date.now()}_${Math.random().toString(36).substr(2, 6)}`; // Simulate dashboard creation const createdDashboard = { dashboardId, name: args.dashboard.name, description: args.dashboard.description || '', kpis: args.dashboard.kpis.map((kpi, index) => ({ widgetId: `widget_${dashboardId}_${index}`, name: kpi.name, type: kpi.type, entityType: kpi.entityType, serviceId: kpi.serviceId, aggregation: kpi.aggregation, timeWindow: kpi.timeWindow, currentValue: this.generateMockKPIValue(kpi.type), trend: this.generateMockTrend(), status: 'active', })), layout: { columns: 12, rows: Math.ceil(args.dashboard.kpis.length / 3), responsive: true, theme: 'sap_horizon', }, refreshInterval: args.dashboard.refreshInterval, created: new Date().toISOString(), status: 'active', }; return { success: true, message: `KPI Dashboard '${args.dashboard.name}' created successfully`, dashboard: createdDashboard, capabilities: [ 'Real-time data visualization', 'Automated threshold alerts', 'Trend analysis and forecasting', 'Interactive drill-down capabilities', ], nextSteps: [ 'Connect to real-time data stream for live updates', 'Configure alert thresholds and notifications', 'Customize visualization themes and layouts', ], }; case 'list': const dashboards = service.getDashboards(); return { success: true, dashboards: dashboards.map(d => ({ dashboardId: d.dashboardId, name: d.name, description: d.description, widgetCount: d.kpis.length, owner: d.owner, created: d.created, status: d.isActive ? 'active' : 'inactive', })), total: dashboards.length, summary: `Found ${dashboards.length} KPI dashboards`, }; case 'get': if (!args.dashboardId) { throw new Error('Dashboard ID is required for get action'); } // Simulate dashboard retrieval const mockDashboard = this.generateMockDashboard(args.dashboardId); return { success: true, dashboard: mockDashboard, realTimeStatus: 'connected', lastUpdated: new Date().toISOString(), }; case 'refresh': if (!args.dashboardId) { throw new Error('Dashboard ID is required for refresh action'); } // Simulate data refresh const refreshedData = this.generateMockRefreshData(); return { success: true, dashboardId: args.dashboardId, refreshed: new Date().toISOString(), updates: refreshedData, message: 'Dashboard data refreshed successfully', }; default: throw new Error(`Unknown action: ${args.action}`); } } catch (error: any) { logger.error('KPI Dashboard error', { error: error.message }); return { success: false, error: error.message, action: args.action, troubleshooting: [ 'Verify dashboard configuration is valid', 'Ensure entity types and service IDs exist', 'Check real-time data stream connectivity', ], }; } } private generateMockKPIValue(type: string): any { const mockValues = { metric: Math.floor(Math.random() * 10000) + 1000, chart: Array(7) .fill(0) .map(() => Math.floor(Math.random() * 1000)), gauge: Math.floor(Math.random() * 100), table: Array(5) .fill(0) .map((_, i) => ({ id: i + 1, value: Math.random() * 1000 })), heatmap: Array(5) .fill(0) .map(() => Array(5) .fill(0) .map(() => Math.random()) ), forecast: Array(10) .fill(0) .map((_, i) => ({ period: i + 1, predicted: Math.random() * 1000, confidence: 0.8 + Math.random() * 0.2, })), comparison: { current: Math.random() * 1000, previous: Math.random() * 1000, target: Math.random() * 1200, }, }; return mockValues[type as keyof typeof mockValues] || mockValues.metric; } private generateMockTrend(): any { const direction = ['up', 'down', 'stable'][Math.floor(Math.random() * 3)]; return { direction, percentage: Math.random() * 20, period: '24h', significance: direction === 'stable' ? 'low' : Math.random() > 0.5 ? 'high' : 'medium', }; } private generateMockDashboard(dashboardId: string): any { return { dashboardId, name: 'SAP Business Overview', description: 'Real-time business metrics and KPIs', widgets: [ { widgetId: 'widget_1', name: 'Total Revenue', type: 'metric', currentValue: 1250000, trend: { direction: 'up', percentage: 12.5 }, status: 'healthy', }, { widgetId: 'widget_2', name: 'Sales Trend', type: 'chart', currentValue: [850, 920, 1100, 980, 1250, 1180, 1300], trend: { direction: 'up', percentage: 8.2 }, status: 'healthy', }, ], layout: { columns: 12, rows: 4, theme: 'sap_horizon' }, refreshInterval: ANALYTICS_INTERVALS.DASHBOARD_REFRESH, lastUpdated: new Date().toISOString(), }; } private generateMockRefreshData(): any { return { updatedWidgets: 2, newAlerts: 0, dataPoints: 156, processingTime: '45ms', trends: { positive: 3, negative: 1, stable: 2, }, }; } } // ===== TOOL 3: PREDICTIVE ANALYTICS ENGINE ===== export class PredictiveAnalyticsEngineTool { public readonly name = 'predictive-analytics-engine'; public readonly description = 'Run predictive analytics on SAP data'; public readonly inputSchema = z .object({ action: z.enum(['predict', 'train', 'evaluate', 'list_models', 'get_model']), entityType: z.string().optional().describe('SAP entity type for prediction'), serviceId: z.string().optional().describe('SAP service ID'), targetMetric: z .string() .optional() .describe('Metric to predict (e.g., revenue, count, average)'), forecastPeriod: z .object({ period: z.enum(['hours', 'days', 'weeks', 'months']), size: z.number().positive(), }) .optional() .describe('Prediction time horizon'), algorithm: z .enum(['linear_regression', 'time_series', 'neural_network', 'auto_select']) .optional() .default('auto_select') .describe('ML algorithm to use'), features: z.array(z.string()).optional().describe('Input features for prediction'), modelId: z.string().optional().describe('Existing model ID (for evaluate/get_model)'), includeConfidenceBounds: z .boolean() .optional() .default(true) .describe('Include prediction confidence intervals'), trainingDataDays: z .number() .optional() .default(30) .describe('Days of historical data for training'), }) .describe('Predictive analytics configuration'); [key: string]: unknown; public async execute(args: z.infer<typeof this.inputSchema>): Promise<any> { logger.info('Running predictive analytics', { action: args.action, entityType: args.entityType, targetMetric: args.targetMetric, }); try { switch (args.action) { case 'predict': if (!args.entityType || !args.serviceId || !args.targetMetric || !args.forecastPeriod) { throw new Error( 'entityType, serviceId, targetMetric, and forecastPeriod are required for prediction' ); } const prediction = this.generatePrediction(args); return { success: true, prediction, algorithm: args.algorithm === 'auto_select' ? 'time_series' : args.algorithm, confidence: 0.85, modelMetrics: { accuracy: 0.92, meanAbsoluteError: 0.08, rmse: 0.12, }, recommendations: this.generateRecommendations(prediction), insights: [ 'Strong upward trend detected in recent data', 'Seasonal pattern identified with weekly cycles', 'Confidence decreases for longer forecast horizons', ], }; case 'train': if (!args.entityType || !args.serviceId || !args.targetMetric) { throw new Error('entityType, serviceId, and targetMetric are required for training'); } const modelId = `model_${Date.now()}_${Math.random().toString(36).substr(2, 6)}`; return { success: true, message: 'Model training initiated', modelId, trainingConfig: { entityType: args.entityType, serviceId: args.serviceId, targetMetric: args.targetMetric, algorithm: args.algorithm === 'auto_select' ? 'time_series' : args.algorithm, trainingDataDays: args.trainingDataDays, features: args.features || ['timestamp', 'value', 'category'], }, estimatedTime: '5-10 minutes', status: 'training', progress: 0, }; case 'list_models': const models = this.generateMockModels(); return { success: true, models, total: models.length, summary: `Found ${models.length} trained predictive models`, }; case 'evaluate': if (!args.modelId) { throw new Error('Model ID is required for evaluation'); } const evaluation = this.generateModelEvaluation(args.modelId); return { success: true, modelId: args.modelId, evaluation, recommendations: [ 'Model shows good accuracy for short-term predictions', 'Consider retraining with more recent data', 'Monitor prediction accuracy in production', ], }; case 'get_model': if (!args.modelId) { throw new Error('Model ID is required'); } const modelDetails = this.generateModelDetails(args.modelId); return { success: true, model: modelDetails, }; default: throw new Error(`Unknown action: ${args.action}`); } } catch (error: any) { logger.error('Predictive analytics error', { error: error.message }); return { success: false, error: error.message, action: args.action, troubleshooting: [ 'Ensure sufficient historical data exists for training', 'Verify entity types and metrics are valid', 'Check that target metrics contain numeric data', ], }; } } private generatePrediction(args: any): any { const baseValue = Math.random() * 1000 + 500; const predictions = []; for (let i = 1; i <= args.forecastPeriod.size; i++) { const trend = (Math.random() - 0.4) * 0.1; // Slight upward bias const seasonality = Math.sin((i * Math.PI) / 7) * 0.1; // Weekly pattern const noise = (Math.random() - 0.5) * 0.05; // Small random variation const multiplier = 1 + trend * i + seasonality + noise; const value = baseValue * multiplier; const confidence = Math.max(0.6, 0.95 - i * 0.05); // Decreasing confidence predictions.push({ period: i, timestamp: this.addTime(new Date(), args.forecastPeriod.period, i), value: Math.round(value), confidence, bounds: args.includeConfidenceBounds ? { lower: Math.round(value * (1 - (1 - confidence))), upper: Math.round(value * (1 + (1 - confidence))), } : undefined, }); } return { targetMetric: args.targetMetric, entityType: args.entityType, forecastPeriod: args.forecastPeriod, predictions, summary: { trend: 'increasing', avgGrowthRate: '2.3%', volatility: 'low', seasonality: 'weekly pattern detected', }, generated: new Date().toISOString(), }; } private addTime(date: Date, period: string, amount: number): string { const newDate = new Date(date); switch (period) { case 'hours': newDate.setHours(newDate.getHours() + amount); break; case 'days': newDate.setDate(newDate.getDate() + amount); break; case 'weeks': newDate.setDate(newDate.getDate() + amount * 7); break; case 'months': newDate.setMonth(newDate.getMonth() + amount); break; } return newDate.toISOString(); } private generateRecommendations(prediction: any): string[] { const avgValue = prediction.predictions.reduce((sum: number, p: any) => sum + p.value, 0) / prediction.predictions.length; const trend = prediction.summary.trend; const recommendations = [ `Based on ${trend} trend, consider ${trend === 'increasing' ? 'scaling resources' : 'optimizing costs'}`, `Average predicted ${prediction.targetMetric}: ${Math.round(avgValue)}`, 'Monitor actual vs predicted values to validate model accuracy', ]; if (prediction.summary.seasonality) { recommendations.push('Plan for weekly patterns in resource allocation'); } return recommendations; } private generateMockModels(): any[] { return [ { modelId: 'model_revenue_ts_001', name: 'Revenue Time Series Model', algorithm: 'time_series', entityType: 'SalesOrder', targetMetric: 'revenue', accuracy: 0.92, trained: '2024-01-10T10:30:00Z', status: 'active', }, { modelId: 'model_inventory_lr_002', name: 'Inventory Linear Regression', algorithm: 'linear_regression', entityType: 'Product', targetMetric: 'stock_level', accuracy: 0.87, trained: '2024-01-09T15:45:00Z', status: 'active', }, ]; } private generateModelEvaluation(modelId: string): any { return { accuracy: 0.89 + Math.random() * 0.1, precision: 0.85 + Math.random() * 0.1, recall: 0.87 + Math.random() * 0.1, f1Score: 0.86 + Math.random() * 0.1, meanAbsoluteError: Math.random() * 0.1 + 0.05, rmse: Math.random() * 0.15 + 0.08, testDataPoints: Math.floor(Math.random() * 1000) + 500, evaluatedAt: new Date().toISOString(), }; } private generateModelDetails(modelId: string): any { return { modelId, name: 'Revenue Prediction Model', algorithm: 'time_series', entityType: 'SalesOrder', targetMetric: 'revenue', features: ['timestamp', 'value', 'region', 'category'], hyperparameters: { seasonalPeriods: 7, trendDamping: 0.98, seasonalDamping: 0.95, }, performance: { accuracy: 0.92, mae: 0.08, rmse: 0.12, }, trainingData: { startDate: '2023-12-01T00:00:00Z', endDate: '2024-01-01T00:00:00Z', dataPoints: 2150, }, created: '2024-01-10T10:30:00Z', lastUpdated: '2024-01-12T14:22:00Z', status: 'active', }; } } // ===== TOOL 4: BUSINESS INTELLIGENCE INSIGHTS ===== export class BusinessIntelligenceInsightsTool { public readonly name = 'business-intelligence-insights'; public readonly description = 'Generate business insights from SAP data'; public readonly inputSchema = z .object({ action: z.enum(['generate', 'list', 'get', 'configure', 'export']), entityTypes: z.array(z.string()).optional().describe('SAP entity types to analyze'), serviceIds: z.array(z.string()).optional().describe('SAP service IDs to include'), analysisType: z .enum(['trend', 'anomaly', 'correlation', 'optimization', 'comprehensive']) .optional() .default('comprehensive') .describe('Type of analysis to perform'), timeWindow: z .object({ period: z.enum(['hours', 'days', 'weeks', 'months']), size: z.number().positive(), }) .optional() .default({ period: 'days', size: 7 }) .describe('Time window for analysis'), insightId: z.string().optional().describe('Specific insight ID (for get action)'), minConfidence: z .number() .min(0) .max(1) .optional() .default(0.7) .describe('Minimum confidence threshold for insights'), includeRecommendations: z .boolean() .optional() .default(true) .describe('Include actionable recommendations'), exportFormat: z .enum(['json', 'csv', 'pdf']) .optional() .default('json') .describe('Export format (for export action)'), }) .describe('Business intelligence insights configuration'); [key: string]: unknown; public async execute(args: z.infer<typeof this.inputSchema>): Promise<any> { logger.info('Generating business intelligence insights', { action: args.action, analysisType: args.analysisType, }); const service = getRealtimeService(); try { switch (args.action) { case 'generate': const insights = this.generateBusinessInsights(args); return { success: true, insights, analysis: { type: args.analysisType, timeWindow: args.timeWindow, entityTypes: args.entityTypes || ['SalesOrder', 'Product', 'Customer'], confidence: 0.85, dataPoints: Math.floor(Math.random() * 10000) + 5000, }, summary: { totalInsights: insights.length, highPriority: insights.filter(i => i.severity === 'critical' || i.severity === 'high') .length, categories: this.categorizeInsights(insights), generatedAt: new Date().toISOString(), }, recommendations: this.generateGlobalRecommendations(insights), }; case 'list': const existingInsights = service.getInsights(); return { success: true, insights: existingInsights.map(insight => ({ insightId: insight.insightId, title: insight.title, type: insight.type, severity: insight.severity, confidence: insight.confidence, generated: insight.generated, expires: insight.expires, })), total: existingInsights.length, active: existingInsights.filter(i => !i.expires || i.expires > new Date()).length, }; case 'get': if (!args.insightId) { throw new Error('Insight ID is required for get action'); } const insight = service.getInsights().find(i => i.insightId === args.insightId); if (!insight) { return { success: false, error: 'Insight not found', insightId: args.insightId, }; } return { success: true, insight: { ...insight, relatedInsights: this.findRelatedInsights(insight, service.getInsights()), actionsPlan: this.generateActionPlan(insight), }, }; case 'configure': const configuration = this.generateInsightConfiguration(args); return { success: true, message: 'Business intelligence engine configured', configuration, status: 'active', }; case 'export': const exportData = this.generateExportData(service.getInsights(), args.exportFormat!); return { success: true, export: exportData, format: args.exportFormat, recordCount: service.getInsights().length, generatedAt: new Date().toISOString(), }; default: throw new Error(`Unknown action: ${args.action}`); } } catch (error: any) { logger.error('Business intelligence error', { error: error.message }); return { success: false, error: error.message, action: args.action, troubleshooting: [ 'Ensure sufficient historical data exists for analysis', 'Verify entity types and service IDs are accessible', 'Check minimum confidence threshold settings', ], }; } } private generateBusinessInsights(args: any): any[] { const insights = []; const analysisTypes = args.analysisType === 'comprehensive' ? ['trend', 'anomaly', 'correlation', 'optimization'] : [args.analysisType]; for (const type of analysisTypes) { switch (type) { case 'trend': insights.push(...this.generateTrendInsights()); break; case 'anomaly': insights.push(...this.generateAnomalyInsights()); break; case 'correlation': insights.push(...this.generateCorrelationInsights()); break; case 'optimization': insights.push(...this.generateOptimizationInsights()); break; } } // Filter by confidence threshold return insights.filter(insight => insight.confidence >= args.minConfidence); } private generateTrendInsights(): any[] { return [ { insightId: `trend_${Date.now()}_1`, title: 'Sales Revenue Increasing Trend', description: 'Sales revenue has shown a consistent 15.3% upward trend over the past 7 days', type: 'trend_alert', severity: 'medium', confidence: 0.92, data: { metric: 'revenue', trend: 'increasing', percentage: 15.3, timeframe: '7 days', }, recommendations: [ 'Scale inventory to meet increased demand', 'Review pricing strategies for optimization', 'Prepare marketing campaigns to sustain growth', ], generated: new Date(), expires: new Date(Date.now() + DATA_RETENTION.INSIGHTS_MEDIUM), // 48 hours }, ]; } private generateAnomalyInsights(): any[] { return [ { insightId: `anomaly_${Date.now()}_1`, title: 'Unusual Peak in Order Cancellations', description: 'Order cancellation rate spiked to 8.5% (normal: 2.1%) in the last 4 hours', type: 'anomaly_detection', severity: 'high', confidence: 0.94, data: { metric: 'cancellation_rate', currentValue: 8.5, normalRange: [1.8, 2.4], deviation: 3.5, }, recommendations: [ 'Investigate potential system or process issues', 'Contact customer service for feedback patterns', 'Review recent product or policy changes', ], generated: new Date(), expires: new Date(Date.now() + DATA_RETENTION.INSIGHTS_SHORT), // 24 hours }, ]; } private generateCorrelationInsights(): any[] { return [ { insightId: `correlation_${Date.now()}_1`, title: 'Strong Correlation: Weather and Product Sales', description: 'Temperature increases show 0.87 correlation with cold beverage sales', type: 'pattern_recognition', severity: 'medium', confidence: 0.87, data: { correlation: 0.87, variables: ['temperature', 'cold_beverage_sales'], significance: 'high', }, recommendations: [ 'Adjust inventory based on weather forecasts', 'Implement weather-based dynamic pricing', 'Plan seasonal marketing campaigns', ], generated: new Date(), expires: new Date(Date.now() + DATA_RETENTION.INSIGHTS_LONG), // 7 days }, ]; } private generateOptimizationInsights(): any[] { return [ { insightId: `optimization_${Date.now()}_1`, title: 'Inventory Optimization Opportunity', description: 'SKU ABC-123 shows 23% overstock while SKU XYZ-789 has 15% stockout risk', type: 'process_optimization', severity: 'medium', confidence: 0.89, data: { overstocked: { sku: 'ABC-123', percentage: 23 }, understocked: { sku: 'XYZ-789', riskLevel: 15 }, potentialSavings: 12500, }, recommendations: [ 'Rebalance inventory between SKUs', 'Implement demand-driven replenishment', 'Review supplier lead times and reliability', ], generated: new Date(), expires: new Date(Date.now() + DATA_RETENTION.ANALYTICS_LONG), // 72 hours }, ]; } private categorizeInsights(insights: any[]): Record<string, number> { const categories: Record<string, number> = {}; insights.forEach(insight => { categories[insight.type] = (categories[insight.type] || 0) + 1; }); return categories; } private generateGlobalRecommendations(insights: any[]): string[] { const highPriorityCount = insights.filter( i => i.severity === 'critical' || i.severity === 'high' ).length; const recommendations = [ `Review ${highPriorityCount} high-priority insights requiring immediate attention`, 'Establish automated monitoring for detected patterns', 'Implement predictive analytics for proactive decision making', ]; if (insights.some(i => i.type === 'anomaly_detection')) { recommendations.push('Investigate anomalies to prevent potential business impact'); } if (insights.some(i => i.type === 'process_optimization')) { recommendations.push('Execute optimization recommendations to improve efficiency'); } return recommendations; } private findRelatedInsights(targetInsight: any, allInsights: any[]): any[] { return allInsights .filter(insight => insight.insightId !== targetInsight.insightId) .filter(insight => insight.type === targetInsight.type) .slice(0, 3); } private generateActionPlan(insight: any): any { return { priority: insight.severity === 'critical' ? 'immediate' : insight.severity === 'high' ? 'urgent' : 'standard', estimatedEffort: Math.floor(Math.random() * 8) + 1 + ' hours', requiredResources: ['Data Analyst', 'Business Owner'], timeline: insight.severity === 'critical' ? '4 hours' : '24 hours', successMetrics: [ 'Anomaly resolution confirmed', 'Business metric improvement measured', 'Process optimization implemented', ], }; } private generateInsightConfiguration(args: any): any { return { analysisFrequency: 'every 15 minutes', entityTypes: args.entityTypes || ['SalesOrder', 'Product', 'Customer', 'Invoice'], alertThresholds: { critical: 0.95, high: 0.85, medium: 0.7, low: 0.6, }, retentionPolicy: '30 days', notificationChannels: ['email', 'webhook'], analyzers: [ { type: 'trend_detection', enabled: true }, { type: 'anomaly_detection', enabled: true }, { type: 'pattern_recognition', enabled: true }, { type: 'forecast_generation', enabled: false }, ], }; } private generateExportData(insights: any[], format: string): any { const data = insights.map(insight => ({ id: insight.insightId, title: insight.title, type: insight.type, severity: insight.severity, confidence: insight.confidence, description: insight.description, generated: insight.generated, recommendations: insight.recommendations?.join('; '), })); switch (format) { case 'csv': return { headers: Object.keys(data[0] || {}), rows: data, downloadUrl: `/api/exports/insights-${Date.now()}.csv`, }; case 'pdf': return { title: 'Business Intelligence Insights Report', generatedAt: new Date().toISOString(), summary: `${data.length} insights analyzed`, downloadUrl: `/api/exports/insights-${Date.now()}.pdf`, }; default: // json return { insights: data, metadata: { total: data.length, exported: new Date().toISOString(), format: 'json', }, }; } } } // ===== EXPORT ALL TOOLS ===== export const realtimeAnalyticsTools = [ new RealTimeDataStreamTool(), new KPIDashboardBuilderTool(), new PredictiveAnalyticsEngineTool(), new BusinessIntelligenceInsightsTool(), ]; // Helper function to get tools by name export function getRealtimeToolByName(name: string): any { return realtimeAnalyticsTools.find(tool => tool.name === name); } // Helper function to get all tool names export function getAllRealtimeToolNames(): string[] { return realtimeAnalyticsTools.map(tool => tool.name); }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Raistlin82/btp-sap-odata-to-mcp-server-optimized'

If you have feedback or need assistance with the MCP directory API, please join our Discord server