Skip to main content
Glama
Raistlin82

SAP OData to MCP Server

by Raistlin82

smart-data-analysis

Analyze SAP data patterns, trends, and generate actionable business insights with AI-powered statistical analysis for automated data exploration and visualization.

Instructions

Analyze SAP data patterns, trends, and generate actionable business insights with AI-powered statistical analysis. Provides automated data exploration and visualization recommendations.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
analysisTypeYesType of analysis to perform
businessContextNoBusiness context for the analysis
dataYesArray of data records to analyze - each record is a key-value object
entityTypeYesType of SAP entity being analyzed

Implementation Reference

  • Core handler function that orchestrates AI-powered data analysis on SAP entity data, generating insights, recommendations, and confidence scores.
    async execute(params: any): Promise<any> { try { logger.info('Starting smart data analysis', { recordCount: params.data.length, analysisType: params.analysisType, entityType: params.entityType, }); const prompt = `Analyze this ${params.entityType} data for ${params.analysisType} patterns and business insights`; const analysis = await aiIntegration.analyzeData(prompt, params.data, params.analysisType); const insights = analysis.insights.map( (insight: any) => `${insight.title}: ${insight.description} (${insight.impact} impact)` ); const recommendations = analysis.recommendations.map( (rec: any) => `${rec.title}: ${rec.description} (Priority: ${rec.priority})` ); return { success: true, analysis, insights, recommendations, confidence: analysis.confidence, }; } catch (error) { const errorMessage = error instanceof Error ? error.message : 'Unknown error'; logger.error('Smart data analysis failed', { error: errorMessage }); return { success: false, error: errorMessage, }; } }
  • Input schema defining the parameters for data analysis: data array, analysis type (trend/anomaly/forecast/correlation), optional business context and entity type.
    inputSchema = { type: 'object' as const, properties: { data: { type: 'array' as const, description: 'Array of data records to analyze - each record is a key-value object', items: { type: 'object' as const, description: 'Data record with flexible schema for SAP entity analysis', additionalProperties: true, }, }, analysisType: { type: 'string' as const, enum: ['trend', 'anomaly', 'forecast', 'correlation'] as const, description: 'Type of analysis to perform', }, businessContext: { type: 'string' as const, description: 'Business context for the analysis', }, entityType: { type: 'string' as const, description: 'Type of SAP entity being analyzed', }, }, required: ['data', 'analysisType', 'entityType'], };
  • Instantiation of SmartDataAnalysisTool and inclusion in the aiEnhancedTools export array, which serves as the registry for AI-enhanced MCP tools.
    export const aiEnhancedTools = [ new NaturalQueryBuilderTool(), new SmartDataAnalysisTool(), new QueryPerformanceOptimizerTool(), new BusinessProcessInsightsTool(), ];
  • Class definition implementing the MCP Tool interface, including name and description.
    export class SmartDataAnalysisTool implements Tool { [key: string]: unknown; name = 'smart-data-analysis';

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Raistlin82/btp-sap-odata-to-mcp-server-optimized'

If you have feedback or need assistance with the MCP directory API, please join our Discord server