Skip to main content
Glama

TAPD Data Fetcher

vector_quick_start.py3.5 kB
#!/usr/bin/env python3 """ TAPD向量化功能快速启动脚本 用于快速初始化和测试向量化功能 """ import asyncio import sys import os # 添加父目录到Python路径,以便导入模块 sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from mcp_tools.data_vectorizer import vectorize_tapd_data, search_tapd_data, get_vector_db_info async def quick_start(): """快速启动向量化功能""" print("🚀 TAPD向量化功能快速启动") print("=" * 50) # 检查数据文件 data_file = "local_data/msg_from_fetcher.json" if not os.path.exists(data_file): print(f"❌ 错误: 未找到数据文件 {data_file}") print("📋 请先运行 TAPD 数据获取功能") return print("✅ 数据文件检查通过") # 检查向量数据库状态 print("\n🔍 检查向量数据库状态...") db_info = await get_vector_db_info() if db_info['status'] == 'not_found': print("📦 向量数据库不存在,开始初始化...") # 执行向量化 result = await vectorize_tapd_data(chunk_size=10) if result['status'] == 'success': print("✅ 向量化完成!") stats = result['stats'] print(f" • 总分片数: {stats['total_chunks']}") print(f" • 总条目数: {stats['total_items']}") print(f" • 向量维度: {stats['vector_dimension']}") else: print(f"❌ 向量化失败: {result['message']}") return else: print("✅ 向量数据库已就绪") if db_info['status'] == 'ready': stats = db_info['stats'] print(f" • 总分片数: {stats['total_chunks']}") print(f" • 总条目数: {stats['total_items']}") # 演示搜索功能 print("\n🔍 演示搜索功能...") demo_queries = [ "订单相关功能", "页面异常缺陷", "商品评价" ] for query in demo_queries: print(f"\n🔎 搜索: '{query}'") search_result = await search_tapd_data(query, 2) if search_result['status'] == 'success': results = search_result['results'] print(f" 找到 {len(results)} 个结果:") for i, result in enumerate(results, 1): score = result['relevance_score'] chunk_info = result['chunk_info'] chunk_type = chunk_info['item_type'] items = result['items'] if items: title = items[0].get('name') or items[0].get('title', '未知') print(f" {i}. [{chunk_type}] {title} (相关度: {score:.3f})") else: print(f" {i}. [{chunk_type}] (相关度: {score:.3f})") else: print(f" ❌ 搜索失败: {search_result['message']}") print("\n" + "=" * 50) print("🎉 快速启动完成!") print("\n💡 使用提示:") print(" 1. 在 Claude Desktop 中测试 MCP 工具:") print(" • vectorize_data - 向量化数据") print(" • search_data - 智能搜索") print(" • get_vector_info - 获取数据库信息") print("\n 2. 查看详细文档:") print(" knowledge_documents\\TAPD数据向量化功能使用手册.md") if __name__ == "__main__": asyncio.run(quick_start())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/OneCuriousLearner/MCPAgentRE'

If you have feedback or need assistance with the MCP directory API, please join our Discord server