Skip to main content
Glama

TAPD Data Fetcher

test_vectorization.py1.84 kB
#!/usr/bin/env python3 """测试向量化功能集成""" import asyncio import json import sys import os # 添加父目录到Python路径,以便导入模块 sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from tapd_mcp_server import ( vectorize_data, search_data, get_vector_info ) async def test_vectorization(): """测试向量化功能""" print("=== 测试向量化功能 ===") # 测试获取数据库信息 print("1. 检查向量数据库状态...") info_result = await get_vector_info() print(f"数据库状态: {json.loads(info_result)['status']}") # 测试搜索功能 print("\n2. 测试搜索功能...") search_result = await search_data("订单相关功能", 3) result_data = json.loads(search_result) print(f"搜索状态: {result_data['status']}") if result_data['status'] == 'success': print(f"找到结果数: {len(result_data['results'])}") for i, result in enumerate(result_data['results']): print(f" 结果{i+1}: 相关度={result['relevance_score']:.3f}, " f"类型={result['chunk_type']}, " f"条目数={result['item_count']}") print("\n3. 测试另一个搜索...") search_result2 = await search_data("页面异常缺陷", 2) result_data2 = json.loads(search_result2) print(f"搜索状态: {result_data2['status']}") if result_data2['status'] == 'success': print(f"找到结果数: {len(result_data2['results'])}") for i, result in enumerate(result_data2['results']): print(f" 结果{i+1}: 相关度={result['relevance_score']:.3f}, " f"类型={result['chunk_type']}") print("\n=== 测试完成 ===") if __name__ == "__main__": asyncio.run(test_vectorization())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/OneCuriousLearner/MCPAgentRE'

If you have feedback or need assistance with the MCP directory API, please join our Discord server