Skip to main content
Glama

TAPD Data Fetcher

test_search_fix.py2 kB
""" 测试simple_search_data功能的脚本 """ import asyncio import sys import os # 添加项目根目录到Python路径 project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0, project_root) from mcp_tools.simple_vectorizer import simple_search_data async def test_search(): """测试搜索功能""" print("开始测试搜索功能...") # 测试查询 query = "高优先级的开发任务" top_k = 5 print(f"查询: {query}") print(f"返回数量: {top_k}") print("-" * 50) try: result = await simple_search_data(query, top_k) print("搜索结果:") print(f"状态: {result.get('status')}") print(f"消息: {result.get('message')}") if result.get('status') == 'success': results = result.get('results', []) print(f"找到 {len(results)} 个结果:") for i, item in enumerate(results, 1): print(f"\n结果 {i}:") print(f" 相关度: {item.get('relevance_score', 0):.4f}") print(f" 类型: {item.get('chunk_type')}") print(f" 条目数: {item.get('item_count')}") items = item.get('items', []) print(f" 包含项目数: {len(items)}") for j, subitem in enumerate(items[:2], 1): # 只显示前2个 name = subitem.get('name') or subitem.get('title', '未知') priority = subitem.get('priority', '未知') print(f" {j}. {name} (优先级: {priority})") else: print("搜索失败!") if 'error_detail' in result: print("错误详情:") print(result['error_detail']) except Exception as e: print(f"测试过程出现异常: {e}") import traceback traceback.print_exc() if __name__ == "__main__": asyncio.run(test_search())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/OneCuriousLearner/MCPAgentRE'

If you have feedback or need assistance with the MCP directory API, please join our Discord server