Skip to main content
Glama

TAPD Data Fetcher

test_token_counter.py1.9 kB
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 测试用 Token 计算器 用法:直接运行本文件。用户可修改顶部的 need_count_token 多行字符串作为输入,程序会输出对应的 token 数。 建议使用:uv run test\test_token_counter.py """ import os import sys # 将项目根目录加入 sys.path,便于导入公共工具 sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from mcp_tools.common_utils import get_token_counter # ---------------- 用户可编辑区:修改下方多行字符串来测试 ---------------- need_count_token = """ 这里是示例文本。 You can replace this block with any text you want to count tokens for. 中文与 English 混排、数字123 和标点符号也会影响 token 估算。 """ # ---------------------------------------------------------------------- def main(): tc = get_token_counter() # 自动优先使用 DeepSeek tokenizer,失败则回退到估算模式 text = need_count_token or "" tokens = tc.count_tokens(text) # 终端输出 print("=== Token 统计结果 ===") print(f"字符数: {len(text)}") print(f"Token 数: {tokens}") if __name__ == "__main__": print( r''' ______ ______ __ __ ______ __ __ /\__ _\ /\ __ \ /\ \/ / /\ ___\ /\ "-.\ \ \/_/\ \/ \ \ \/\ \ \ \ _"-. \ \ __\ \ \ \-. \ \ \_\ \ \_____\ \ \_\ \_\ \ \_____\ \ \_\\"\_\ \/_/ \/_____/ \/_/\/_/ \/_____/ \/_/ \/_/ ______ ______ __ __ __ __ ______ ______ ______ /\ ___\ /\ __ \ /\ \/\ \ /\ "-.\ \ /\__ _\ /\ ___\ /\ == \ \ \ \____ \ \ \/\ \ \ \ \_\ \ \ \ \-. \ \/_/\ \/ \ \ __\ \ \ __< \ \_____\ \ \_____\ \ \_____\ \ \_\\"\_\ \ \_\ \ \_____\ \ \_\ \_\ \/_____/ \/_____/ \/_____/ \/_/ \/_/ \/_/ \/_____/ \/_/ /_/ ''') main()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/OneCuriousLearner/MCPAgentRE'

If you have feedback or need assistance with the MCP directory API, please join our Discord server