Skip to main content
Glama

EPICS MCP Server

by Jacky1-Jiang
langchain_mcp_client_sse.py1.14 kB
from langchain_mcp_adapters.client import MultiServerMCPClient from langgraph.prebuilt import create_react_agent from langchain_openai import AzureChatOpenAI import os from dotenv import load_dotenv import asyncio env_path = ".env" load_dotenv(env_path) azure_openai_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT") azure_openai_api_key = os.getenv("AZURE_OPENAI_API_KEY") model = AzureChatOpenAI( azure_deployment="gpt-4o-mini-2", api_version="2024-02-01", temperature=0, max_tokens=None, timeout=None, max_retries=2, ) async def run_agent(): async with MultiServerMCPClient( { "mcp_epics_server":{ "url": "http://localhost:8000/sse", "transport":"sse" } } ) as client: agent = create_react_agent(model, client.get_tools()) epics_response = await agent.ainvoke({"messages":"To query the value of a PV (Process Variable) named temperature:water"}) return epics_response if __name__ == "__main__": response = asyncio.run(run_agent()) for m in response["messages"]: m.pretty_print()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Jacky1-Jiang/EPICS-MCP-Server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server