Custom MCP Server for Cursor

by Feustey

Integrations

  • Enables configuration of environment variables for API keys and other settings

  • Enables cloning the repository and pushing changes for deployment

  • Allows forking projects, creating branches, committing changes, and opening pull requests for contribution

MCP - Question-Answer System with RAG

MCP is an advanced question-answering system using the Retrieval-Augmented Generation (RAG) technique to provide accurate and contextual answers based on a corpus of documents.

Features

  • 🔍 Semantic search in documents
  • 💾 Smart caching with Redis
  • 📊 Persistent storage with MongoDB
  • 🤖 Integration with OpenAI for embeddings and text generation
  • 📈 System monitoring and metrics
  • 🔄 Asynchronous operations management

Prerequisites

  • Python 3.9+
  • MongoDB Community Edition
  • Redis
  • OpenAI API Key

Facility

  1. Clone the repository:
git clone https://github.com/votre-username/mcp.git cd mcp
  1. Install system dependencies:
# MongoDB brew tap mongodb/brew brew install mongodb-community brew services start mongodb-community # Redis brew install redis brew services start redis
  1. Configure the Python environment:
python -m venv .venv source .venv/bin/activate # Sur Unix/macOS pip install -r requirements.txt
  1. Configure environment variables:
cp .env.example .env # Éditer .env avec vos configurations

Quick use

from src.rag import RAGWorkflow # Initialisation rag = RAGWorkflow() # Ingestion de documents await rag.ingest_documents("chemin/vers/documents") # Interrogation response = await rag.query("Votre question ici ?")

Documentation

Tests

python -m pytest tests/ -v

Project structure

mcp/ ├── src/ │ ├── __init__.py │ ├── rag.py # Workflow RAG principal │ ├── models.py # Modèles de données │ ├── mongo_operations.py # Opérations MongoDB │ ├── redis_operations.py # Opérations Redis │ └── database.py # Configuration de la base de données ├── tests/ │ ├── __init__.py │ ├── test_mcp.py │ └── test_mongo_integration.py ├── prompts/ │ ├── system_prompt.txt │ ├── query_prompt.txt │ └── response_prompt.txt ├── docs/ │ ├── installation.md │ ├── usage.md │ ├── architecture.md │ └── api.md ├── requirements.txt ├── .env.example └── README.md

Contribution

  1. Fork the project
  2. Create a branch for your feature ( git checkout -b feature/AmazingFeature )
  3. Commit your changes ( git commit -m 'Add some AmazingFeature' )
  4. Push to branch ( git push origin feature/AmazingFeature )
  5. Open a Pull Request

License

This project is licensed under the MIT License. See the LICENSE file for details.

Contact

Your Name - @your_twitter

Project link: https://github.com/your-username/mcp

-
security - not tested
F
license - not found
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

Connects to Cursor and enables deep web searches via Linkup and RAG capabilities using LlamaIndex.

  1. Features
    1. Prerequisites
      1. Facility
        1. Quick use
          1. Documentation
            1. Tests
              1. Project structure
                1. Contribution
                  1. License
                    1. Contact

                      Related MCP Servers

                      • A
                        security
                        A
                        license
                        A
                        quality
                        Integrates Tavily's search API with LLMs to provide advanced web search capabilities, including intelligent result summaries, domain filtering for quality control, and configurable search parameters.
                        Last updated -
                        3
                        64
                        9
                        JavaScript
                        MIT License
                        • Linux
                      • -
                        security
                        A
                        license
                        -
                        quality
                        The Search MCP Server enables seamless integration of network and local search capabilities in tools like Claude Desktop and Cursor, utilizing the Brave Search API for high-concurrency and asynchronous requests.
                        Last updated -
                        1
                        52
                        Python
                        MIT License
                        • Linux
                      • -
                        security
                        F
                        license
                        -
                        quality
                        Enables LLMs to perform sophisticated web searches through proxy servers using Tavily's API, supporting comprehensive web searches, direct question answering, and recent news article retrieval with AI-extracted content.
                        Last updated -
                        1
                        Python
                      • -
                        security
                        A
                        license
                        -
                        quality
                        Provides AI-powered web search capabilities using Tavily's search API, enabling LLMs to perform sophisticated web searches, get direct answers to questions, and search recent news articles.
                        Last updated -
                        53
                        Python
                        MIT License
                        • Linux
                        • Apple

                      View all related MCP servers

                      ID: h4brwz5a0d