Skip to main content
Glama

Custom MCP Server for Cursor

by Feustey

MCP - Question-Answer System with RAG

MCP is an advanced question-answering system using the Retrieval-Augmented Generation (RAG) technique to provide accurate and contextual answers based on a corpus of documents.

Features

  • 🔍 Semantic search in documents
  • 💾 Smart caching with Redis
  • 📊 Persistent storage with MongoDB
  • 🤖 Integration with OpenAI for embeddings and text generation
  • 📈 System monitoring and metrics
  • 🔄 Asynchronous operations management

Prerequisites

  • Python 3.9+
  • MongoDB Community Edition
  • Redis
  • OpenAI API Key

Facility

  1. Clone the repository:
git clone https://github.com/votre-username/mcp.git cd mcp
  1. Install system dependencies:
# MongoDB brew tap mongodb/brew brew install mongodb-community brew services start mongodb-community # Redis brew install redis brew services start redis
  1. Configure the Python environment:
python -m venv .venv source .venv/bin/activate # Sur Unix/macOS pip install -r requirements.txt
  1. Configure environment variables:
cp .env.example .env # Éditer .env avec vos configurations

Quick use

from src.rag import RAGWorkflow # Initialisation rag = RAGWorkflow() # Ingestion de documents await rag.ingest_documents("chemin/vers/documents") # Interrogation response = await rag.query("Votre question ici ?")

Documentation

Tests

python -m pytest tests/ -v

Project structure

mcp/ ├── src/ │ ├── __init__.py │ ├── rag.py # Workflow RAG principal │ ├── models.py # Modèles de données │ ├── mongo_operations.py # Opérations MongoDB │ ├── redis_operations.py # Opérations Redis │ └── database.py # Configuration de la base de données ├── tests/ │ ├── __init__.py │ ├── test_mcp.py │ └── test_mongo_integration.py ├── prompts/ │ ├── system_prompt.txt │ ├── query_prompt.txt │ └── response_prompt.txt ├── docs/ │ ├── installation.md │ ├── usage.md │ ├── architecture.md │ └── api.md ├── requirements.txt ├── .env.example └── README.md

Contribution

  1. Fork the project
  2. Create a branch for your feature ( git checkout -b feature/AmazingFeature )
  3. Commit your changes ( git commit -m 'Add some AmazingFeature' )
  4. Push to branch ( git push origin feature/AmazingFeature )
  5. Open a Pull Request

License

This project is licensed under the MIT License. See the LICENSE file for details.

Contact

Your Name - @your_twitter

Project link: https://github.com/your-username/mcp

-
security - not tested
F
license - not found
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

Connects to Cursor and enables deep web searches via Linkup and RAG capabilities using LlamaIndex.

  1. Features
    1. Prerequisites
      1. Facility
        1. Quick use
          1. Documentation
            1. Tests
              1. Project structure
                1. Contribution
                  1. License
                    1. Contact

                      Related MCP Servers

                      • -
                        security
                        A
                        license
                        -
                        quality
                        Facilitates integration with the Cursor code editor by enabling real-time code indexing, analysis, and bi-directional communication with Claude, supporting concurrent sessions and automatic reconnection.
                        Last updated -
                        2
                        21
                        31
                        TypeScript
                        MIT License
                      • -
                        security
                        A
                        license
                        -
                        quality
                        Enables integration with DuckDuckGo search capabilities for LLMs, supporting comprehensive web search, regional filtering, result types, and safe browsing with caching and customizable search parameters.
                        Last updated -
                        26
                        2
                        TypeScript
                        MIT License
                      • A
                        security
                        A
                        license
                        A
                        quality
                        Enables efficient web search integration with Jina.ai's Search API, offering clean, LLM-optimized content retrieval with support for various content types and configurable caching.
                        Last updated -
                        1
                        22
                        3
                        JavaScript
                        MIT License
                      • -
                        security
                        -
                        license
                        -
                        quality
                        A Python-based local indexing server that creates semantic search capabilities for codebases using ChromaDB, allowing Cursor IDE to perform vector searches on your code without sending data to external services.
                        Last updated -
                        5
                        Python

                      View all related MCP servers

                      MCP directory API

                      We provide all the information about MCP servers via our MCP API.

                      curl -X GET 'https://glama.ai/api/mcp/v1/servers/Feustey/MCP'

                      If you have feedback or need assistance with the MCP directory API, please join our Discord server