test_image_support_integration.py•21.1 kB
"""
Integration tests for native image support feature.
Tests the complete image support pipeline:
- Conversation memory integration with images
- Tool request validation and schema support
- Provider image processing capabilities
- Cross-tool image context preservation
"""
import json
import os
import tempfile
import uuid
from unittest.mock import Mock, patch
import pytest
from tools.chat import ChatTool
from tools.debug import DebugIssueTool
from utils.conversation_memory import (
ConversationTurn,
ThreadContext,
add_turn,
create_thread,
get_conversation_image_list,
get_thread,
)
from utils.model_context import ModelContext
@pytest.mark.no_mock_provider
class TestImageSupportIntegration:
"""Integration tests for the complete image support feature."""
def test_conversation_turn_includes_images(self):
"""Test that ConversationTurn can store and track images."""
turn = ConversationTurn(
role="user",
content="Please analyze this diagram",
timestamp="2025-01-01T00:00:00Z",
files=["code.py"],
images=["diagram.png", "flowchart.jpg"],
tool_name="chat",
)
assert turn.images == ["diagram.png", "flowchart.jpg"]
assert turn.files == ["code.py"]
assert turn.content == "Please analyze this diagram"
def test_get_conversation_image_list_newest_first(self):
"""Test that image list prioritizes newest references."""
# Create thread context with multiple turns
context = ThreadContext(
thread_id=str(uuid.uuid4()),
created_at="2025-01-01T00:00:00Z",
last_updated_at="2025-01-01T00:00:00Z",
tool_name="chat",
turns=[
ConversationTurn(
role="user",
content="Turn 1",
timestamp="2025-01-01T00:00:00Z",
images=["old_diagram.png", "shared.png"],
),
ConversationTurn(
role="assistant", content="Turn 2", timestamp="2025-01-01T01:00:00Z", images=["middle.png"]
),
ConversationTurn(
role="user",
content="Turn 3",
timestamp="2025-01-01T02:00:00Z",
images=["shared.png", "new_diagram.png"], # shared.png appears again
),
],
initial_context={},
)
image_list = get_conversation_image_list(context)
# Should prioritize newest first, with duplicates removed (newest wins)
expected = ["shared.png", "new_diagram.png", "middle.png", "old_diagram.png"]
assert image_list == expected
@patch("utils.conversation_memory.get_storage")
def test_add_turn_with_images(self, mock_storage):
"""Test adding a conversation turn with images."""
mock_client = Mock()
mock_storage.return_value = mock_client
# Mock the Redis operations to return success
mock_client.set.return_value = True
thread_id = create_thread("test_tool", {"initial": "context"})
# Set up initial thread context for add_turn to find
initial_context = ThreadContext(
thread_id=thread_id,
created_at="2025-01-01T00:00:00Z",
last_updated_at="2025-01-01T00:00:00Z",
tool_name="test_tool",
turns=[], # Empty initially
initial_context={"initial": "context"},
)
mock_client.get.return_value = initial_context.model_dump_json()
success = add_turn(
thread_id=thread_id,
role="user",
content="Analyze these screenshots",
files=["app.py"],
images=["screenshot1.png", "screenshot2.png"],
tool_name="debug",
)
assert success
# Mock thread context for get_thread call
updated_context = ThreadContext(
thread_id=thread_id,
created_at="2025-01-01T00:00:00Z",
last_updated_at="2025-01-01T00:00:00Z",
tool_name="test_tool",
turns=[
ConversationTurn(
role="user",
content="Analyze these screenshots",
timestamp="2025-01-01T00:00:00Z",
files=["app.py"],
images=["screenshot1.png", "screenshot2.png"],
tool_name="debug",
)
],
initial_context={"initial": "context"},
)
mock_client.get.return_value = updated_context.model_dump_json()
# Retrieve and verify the thread
context = get_thread(thread_id)
assert context is not None
assert len(context.turns) == 1
turn = context.turns[0]
assert turn.images == ["screenshot1.png", "screenshot2.png"]
assert turn.files == ["app.py"]
assert turn.content == "Analyze these screenshots"
def test_chat_tool_schema_includes_images(self):
"""Test that ChatTool schema includes images field."""
tool = ChatTool()
schema = tool.get_input_schema()
assert "images" in schema["properties"]
images_field = schema["properties"]["images"]
assert images_field["type"] == "array"
assert images_field["items"]["type"] == "string"
assert "visual context" in images_field["description"].lower()
def test_debug_tool_schema_includes_images(self):
"""Test that DebugIssueTool schema includes images field."""
tool = DebugIssueTool()
schema = tool.get_input_schema()
assert "images" in schema["properties"]
images_field = schema["properties"]["images"]
assert images_field["type"] == "array"
assert images_field["items"]["type"] == "string"
assert "screenshots" in images_field["description"].lower()
def test_tool_image_validation_limits(self):
"""Test that tools validate image size limits using real provider resolution."""
tool = ChatTool()
# Create small test images (each 0.5MB, total 1MB)
small_images = []
for _ in range(2):
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
# Write 0.5MB of data
temp_file.write(b"\x00" * (512 * 1024))
small_images.append(temp_file.name)
try:
# Test with an invalid model name that doesn't exist in any provider
# Use model_context parameter name (not positional)
result = tool._validate_image_limits(small_images, model_context=ModelContext("non-existent-model-12345"))
# Should return error because model not available or doesn't support images
assert result is not None
assert result["status"] == "error"
assert "is not available" in result["content"] or "does not support image processing" in result["content"]
# Test that empty/None images always pass regardless of model
result = tool._validate_image_limits([], model_context=ModelContext("gemini-2.5-pro"))
assert result is None
result = tool._validate_image_limits(None, model_context=ModelContext("gemini-2.5-pro"))
assert result is None
finally:
# Clean up temp files
for img_path in small_images:
if os.path.exists(img_path):
os.unlink(img_path)
def test_image_validation_model_specific_limits(self):
"""Test that different models have appropriate size limits using real provider resolution."""
tool = ChatTool()
# Test with Gemini model which has better image support in test environment
# Create 15MB image (under default limits)
small_image_path = None
large_image_path = None
try:
# Create 15MB image
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
temp_file.write(b"\x00" * (15 * 1024 * 1024)) # 15MB
small_image_path = temp_file.name
# Test with the default model from test environment (gemini-2.5-flash)
result = tool._validate_image_limits([small_image_path], ModelContext("gemini-2.5-flash"))
assert result is None # Should pass for Gemini models
# Create 150MB image (over typical limits)
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
temp_file.write(b"\x00" * (150 * 1024 * 1024)) # 150MB
large_image_path = temp_file.name
result = tool._validate_image_limits([large_image_path], ModelContext("gemini-2.5-flash"))
# Large images should fail validation
assert result is not None
assert result["status"] == "error"
assert "Image size limit exceeded" in result["content"]
finally:
# Clean up temp files
if small_image_path and os.path.exists(small_image_path):
os.unlink(small_image_path)
if large_image_path and os.path.exists(large_image_path):
os.unlink(large_image_path)
@pytest.mark.asyncio
async def test_chat_tool_execution_with_images(self):
"""Test that ChatTool can execute with images parameter using real provider resolution."""
import importlib
# Create a temporary image file for testing
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
# Write a simple PNG header (minimal valid PNG)
png_header = b"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00\x00\x01\x08\x06\x00\x00\x00\x1f\x15\xc4\x89\x00\x00\x00\rIDATx\x9cc\x00\x01\x00\x00\x05\x00\x01\r\n-\xdb\x00\x00\x00\x00IEND\xaeB`\x82"
temp_file.write(png_header)
temp_image_path = temp_file.name
# Save original environment
original_env = {
"OPENAI_API_KEY": os.environ.get("OPENAI_API_KEY"),
"DEFAULT_MODEL": os.environ.get("DEFAULT_MODEL"),
}
try:
# Set up environment for real provider resolution
os.environ["OPENAI_API_KEY"] = "sk-test-key-images-test-not-real"
os.environ["DEFAULT_MODEL"] = "gpt-4o"
# Clear other provider keys to isolate to OpenAI
for key in ["GEMINI_API_KEY", "XAI_API_KEY", "OPENROUTER_API_KEY"]:
os.environ.pop(key, None)
# Reload config and clear registry
import config
importlib.reload(config)
from providers.registry import ModelProviderRegistry
ModelProviderRegistry._instance = None
tool = ChatTool()
# Test with real provider resolution
try:
result = await tool.execute(
{"prompt": "What do you see in this image?", "images": [temp_image_path], "model": "gpt-4o"}
)
# If we get here, check the response format
assert len(result) == 1
# Should be a valid JSON response
output = json.loads(result[0].text)
assert "status" in output
# Test passed - provider accepted images parameter
except Exception as e:
# Expected: API call will fail with fake key
error_msg = str(e)
# Should NOT be a mock-related error
assert "MagicMock" not in error_msg
assert "'<' not supported between instances" not in error_msg
# Should be a real provider error (API key or network)
assert any(
phrase in error_msg
for phrase in ["API", "key", "authentication", "provider", "network", "connection", "401", "403"]
)
# Test passed - provider processed images parameter before failing on auth
finally:
# Clean up temp file
os.unlink(temp_image_path)
# Restore environment
for key, value in original_env.items():
if value is not None:
os.environ[key] = value
else:
os.environ.pop(key, None)
# Reload config and clear registry
importlib.reload(config)
ModelProviderRegistry._instance = None
@patch("utils.conversation_memory.get_storage")
def test_cross_tool_image_context_preservation(self, mock_storage):
"""Test that images are preserved across different tools in conversation."""
mock_client = Mock()
mock_storage.return_value = mock_client
# Mock the Redis operations to return success
mock_client.set.return_value = True
# Create initial thread with chat tool
thread_id = create_thread("chat", {"initial": "context"})
# Set up initial thread context for add_turn to find
initial_context = ThreadContext(
thread_id=thread_id,
created_at="2025-01-01T00:00:00Z",
last_updated_at="2025-01-01T00:00:00Z",
tool_name="chat",
turns=[], # Empty initially
initial_context={"initial": "context"},
)
mock_client.get.return_value = initial_context.model_dump_json()
# Add turn with images from chat tool
add_turn(
thread_id=thread_id,
role="user",
content="Here's my UI design",
images=["design.png", "mockup.jpg"],
tool_name="chat",
)
add_turn(
thread_id=thread_id, role="assistant", content="I can see your design. It looks good!", tool_name="chat"
)
# Add turn with different images from debug tool
add_turn(
thread_id=thread_id,
role="user",
content="Now I'm getting this error",
images=["error_screen.png"],
files=["error.log"],
tool_name="debug",
)
# Mock complete thread context for get_thread call
complete_context = ThreadContext(
thread_id=thread_id,
created_at="2025-01-01T00:00:00Z",
last_updated_at="2025-01-01T00:05:00Z",
tool_name="chat",
turns=[
ConversationTurn(
role="user",
content="Here's my UI design",
timestamp="2025-01-01T00:01:00Z",
images=["design.png", "mockup.jpg"],
tool_name="chat",
),
ConversationTurn(
role="assistant",
content="I can see your design. It looks good!",
timestamp="2025-01-01T00:02:00Z",
tool_name="chat",
),
ConversationTurn(
role="user",
content="Now I'm getting this error",
timestamp="2025-01-01T00:03:00Z",
images=["error_screen.png"],
files=["error.log"],
tool_name="debug",
),
],
initial_context={"initial": "context"},
)
mock_client.get.return_value = complete_context.model_dump_json()
# Retrieve thread and check image preservation
context = get_thread(thread_id)
assert context is not None
# Get conversation image list (should prioritize newest first)
image_list = get_conversation_image_list(context)
expected = ["error_screen.png", "design.png", "mockup.jpg"]
assert image_list == expected
# Verify each turn has correct images
assert context.turns[0].images == ["design.png", "mockup.jpg"]
assert context.turns[1].images is None # Assistant turn without images
assert context.turns[2].images == ["error_screen.png"]
def test_tool_request_base_class_has_images(self):
"""Test that base ToolRequest class includes images field."""
from tools.shared.base_models import ToolRequest
# Create request with images
request = ToolRequest(images=["test.png", "test2.jpg"])
assert request.images == ["test.png", "test2.jpg"]
# Test default value
request_no_images = ToolRequest()
assert request_no_images.images is None
def test_data_url_image_format_support(self):
"""Test that tools can handle data URL format images."""
tool = ChatTool()
# Test with data URL (base64 encoded 1x1 transparent PNG)
data_url = ""
images = [data_url]
# Test with a dummy model that doesn't exist in any provider
result = tool._validate_image_limits(images, ModelContext("test-dummy-model-name"))
# Should return error because model not available or doesn't support images
assert result is not None
assert result["status"] == "error"
assert "is not available" in result["content"] or "does not support image processing" in result["content"]
# Test with another non-existent model to check error handling
result = tool._validate_image_limits(images, ModelContext("another-dummy-model"))
# Should return error because model not available
assert result is not None
assert result["status"] == "error"
def test_empty_images_handling(self):
"""Test that tools handle empty images lists gracefully."""
tool = ChatTool()
# Empty list should not fail validation (no need for provider setup)
result = tool._validate_image_limits([], ModelContext("gemini-2.5-pro"))
assert result is None
# None should not fail validation (no need for provider setup)
result = tool._validate_image_limits(None, ModelContext("gemini-2.5-pro"))
assert result is None
@patch("utils.conversation_memory.get_storage")
def test_conversation_memory_thread_chaining_with_images(self, mock_storage):
"""Test that images work correctly with conversation thread chaining."""
mock_client = Mock()
mock_storage.return_value = mock_client
# Mock the Redis operations to return success
mock_client.set.return_value = True
# Create parent thread with images
parent_thread_id = create_thread("chat", {"parent": "context"})
# Set up initial parent thread context for add_turn to find
parent_context = ThreadContext(
thread_id=parent_thread_id,
created_at="2025-01-01T00:00:00Z",
last_updated_at="2025-01-01T00:00:00Z",
tool_name="chat",
turns=[], # Empty initially
initial_context={"parent": "context"},
)
mock_client.get.return_value = parent_context.model_dump_json()
add_turn(
thread_id=parent_thread_id,
role="user",
content="Parent thread with images",
images=["parent1.png", "shared.png"],
tool_name="chat",
)
# Create child thread linked to parent using a simple tool
child_thread_id = create_thread("chat", {"prompt": "child context"}, parent_thread_id=parent_thread_id)
add_turn(
thread_id=child_thread_id,
role="user",
content="Child thread with more images",
images=["child1.png", "shared.png"], # shared.png appears again (should prioritize newer)
tool_name="chat",
)
# Mock child thread context for get_thread call
child_context = ThreadContext(
thread_id=child_thread_id,
created_at="2025-01-01T00:00:00Z",
last_updated_at="2025-01-01T00:02:00Z",
tool_name="debug",
turns=[
ConversationTurn(
role="user",
content="Child thread with more images",
timestamp="2025-01-01T00:02:00Z",
images=["child1.png", "shared.png"],
tool_name="debug",
)
],
initial_context={"child": "context"},
parent_thread_id=parent_thread_id,
)
mock_client.get.return_value = child_context.model_dump_json()
# Get child thread and verify image collection works across chain
child_context = get_thread(child_thread_id)
assert child_context is not None
assert child_context.parent_thread_id == parent_thread_id
# Test image collection for child thread only
child_images = get_conversation_image_list(child_context)
assert child_images == ["child1.png", "shared.png"]