Skip to main content
Glama

Gemini MCP Server

sanitize_cassettes.pyโ€ข3.26 kB
#!/usr/bin/env python3 """ Script to sanitize existing cassettes by applying PII sanitization. This script will: 1. Load existing cassettes 2. Apply PII sanitization to all interactions 3. Create backups of originals 4. Save sanitized versions """ import json import shutil import sys from datetime import datetime from pathlib import Path # Add tests directory to path to import our modules sys.path.insert(0, str(Path(__file__).parent)) from pii_sanitizer import PIISanitizer def sanitize_cassette(cassette_path: Path, backup: bool = True) -> bool: """Sanitize a single cassette file.""" print(f"\n๐Ÿ” Processing: {cassette_path}") if not cassette_path.exists(): print(f"โŒ File not found: {cassette_path}") return False try: # Load cassette with open(cassette_path) as f: cassette_data = json.load(f) # Create backup if requested if backup: backup_path = cassette_path.with_suffix(f'.backup-{datetime.now().strftime("%Y%m%d-%H%M%S")}.json') shutil.copy2(cassette_path, backup_path) print(f"๐Ÿ“ฆ Backup created: {backup_path}") # Initialize sanitizer sanitizer = PIISanitizer() # Sanitize interactions if "interactions" in cassette_data: sanitized_interactions = [] for interaction in cassette_data["interactions"]: sanitized_interaction = {} # Sanitize request if "request" in interaction: sanitized_interaction["request"] = sanitizer.sanitize_request(interaction["request"]) # Sanitize response if "response" in interaction: sanitized_interaction["response"] = sanitizer.sanitize_response(interaction["response"]) sanitized_interactions.append(sanitized_interaction) cassette_data["interactions"] = sanitized_interactions # Save sanitized cassette with open(cassette_path, "w") as f: json.dump(cassette_data, f, indent=2, sort_keys=True) print(f"โœ… Sanitized: {cassette_path}") return True except Exception as e: print(f"โŒ Error processing {cassette_path}: {e}") import traceback traceback.print_exc() return False def main(): """Sanitize all cassettes in the openai_cassettes directory.""" cassettes_dir = Path(__file__).parent / "openai_cassettes" if not cassettes_dir.exists(): print(f"โŒ Directory not found: {cassettes_dir}") sys.exit(1) # Find all JSON cassettes cassette_files = list(cassettes_dir.glob("*.json")) if not cassette_files: print(f"โŒ No cassette files found in {cassettes_dir}") sys.exit(1) print(f"๐ŸŽฌ Found {len(cassette_files)} cassette(s) to sanitize") # Process each cassette success_count = 0 for cassette_path in cassette_files: if sanitize_cassette(cassette_path): success_count += 1 print(f"\nโœจ Sanitization complete: {success_count}/{len(cassette_files)} cassettes processed successfully") if success_count < len(cassette_files): sys.exit(1) if __name__ == "__main__": main()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/BeehiveInnovations/gemini-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server