Skip to main content
Glama

Gemini MCP Server

test_collaboration.py24.5 kB
""" Tests for dynamic context request and collaboration features """ import json import os from unittest.mock import Mock, patch import pytest from tests.mock_helpers import create_mock_provider from tools.analyze import AnalyzeTool from tools.debug import DebugIssueTool from tools.models import FilesNeededRequest, ToolOutput class TestDynamicContextRequests: """Test the dynamic context request mechanism""" @pytest.fixture def analyze_tool(self): return AnalyzeTool() @pytest.fixture def debug_tool(self): return DebugIssueTool() @pytest.mark.asyncio @patch("tools.shared.base_tool.BaseTool.get_model_provider") async def test_clarification_request_parsing(self, mock_get_provider, analyze_tool): """Test that tools correctly parse clarification requests""" # Mock model to return a clarification request clarification_json = json.dumps( { "status": "files_required_to_continue", "mandatory_instructions": "I need to see the package.json file to understand dependencies", "files_needed": ["package.json", "package-lock.json"], }, ensure_ascii=False, ) mock_provider = create_mock_provider() mock_provider.get_provider_type.return_value = Mock(value="google") mock_provider.generate_content.return_value = Mock( content=clarification_json, usage={}, model_name="gemini-2.5-flash", metadata={} ) mock_get_provider.return_value = mock_provider result = await analyze_tool.execute( { "step": "Analyze the dependencies used in this project", "step_number": 1, "total_steps": 1, "next_step_required": False, "findings": "Initial dependency analysis", "relevant_files": ["/absolute/path/src/index.js"], } ) assert len(result) == 1 # Parse the response - analyze tool now uses workflow architecture response_data = json.loads(result[0].text) # Workflow tools may handle provider errors differently than simple tools # They might return error, expert analysis, or clarification requests assert response_data["status"] in ["calling_expert_analysis", "error", "files_required_to_continue"] # Check that expert analysis was performed and contains the clarification if "expert_analysis" in response_data: expert_analysis = response_data["expert_analysis"] # The mock should have returned the clarification JSON if "raw_analysis" in expert_analysis: analysis_content = expert_analysis["raw_analysis"] assert "package.json" in analysis_content assert "dependencies" in analysis_content # For workflow tools, the files_needed logic is handled differently # The test validates that the mocked clarification content was processed assert "step_number" in response_data assert response_data["step_number"] == 1 @pytest.mark.asyncio @patch("tools.shared.base_tool.BaseTool.get_model_provider") @patch("utils.conversation_memory.create_thread", return_value="debug-test-uuid") @patch("utils.conversation_memory.add_turn") async def test_normal_response_not_parsed_as_clarification( self, mock_add_turn, mock_create_thread, mock_get_provider, debug_tool ): """Test that normal investigation responses work correctly with new debug tool""" # The new debug tool uses self-investigation pattern result = await debug_tool.execute( { "step": "Investigating NameError: name 'utils' is not defined", "step_number": 1, "total_steps": 3, "next_step_required": True, "findings": "The error indicates 'utils' module is not imported or defined", "files_checked": ["/code/main.py"], "relevant_files": ["/code/main.py"], "hypothesis": "Missing import statement for utils module", "confidence": "high", } ) assert len(result) == 1 # Parse the response - new debug tool returns structured JSON response_data = json.loads(result[0].text) # Debug tool now returns "pause_for_investigation" to force actual investigation assert response_data["status"] == "pause_for_investigation" assert response_data["step_number"] == 1 assert response_data["next_step_required"] is True assert response_data["investigation_status"]["current_confidence"] == "high" assert response_data["investigation_required"] is True assert "required_actions" in response_data @pytest.mark.asyncio @patch("tools.shared.base_tool.BaseTool.get_model_provider") async def test_malformed_clarification_request_treated_as_normal(self, mock_get_provider, analyze_tool): """Test that malformed JSON clarification requests are treated as normal responses""" malformed_json = '{"status": "files_required_to_continue", "prompt": "Missing closing brace"' mock_provider = create_mock_provider() mock_provider.get_provider_type.return_value = Mock(value="google") mock_provider.generate_content.return_value = Mock( content=malformed_json, usage={}, model_name="gemini-2.5-flash", metadata={} ) mock_get_provider.return_value = mock_provider result = await analyze_tool.execute( { "step": "What does this do?", "step_number": 1, "total_steps": 1, "next_step_required": False, "findings": "Initial code analysis", "relevant_files": ["/absolute/path/test.py"], } ) assert len(result) == 1 # Should be treated as normal response due to JSON parse error response_data = json.loads(result[0].text) # Workflow tools may handle provider errors differently than simple tools # They might return error, expert analysis, or clarification requests assert response_data["status"] in ["calling_expert_analysis", "error", "files_required_to_continue"] # The malformed JSON should appear in the expert analysis content if "expert_analysis" in response_data: expert_analysis = response_data["expert_analysis"] if "raw_analysis" in expert_analysis: analysis_content = expert_analysis["raw_analysis"] # The malformed JSON should be included in the analysis assert "files_required_to_continue" in analysis_content or malformed_json in str(response_data) @pytest.mark.asyncio @patch("tools.shared.base_tool.BaseTool.get_model_provider") async def test_clarification_with_suggested_action(self, mock_get_provider, analyze_tool): """Test clarification request with suggested next action""" import importlib from providers.registry import ModelProviderRegistry # Ensure deterministic model configuration for this test regardless of previous suites ModelProviderRegistry.reset_for_testing() original_default = os.environ.get("DEFAULT_MODEL") try: os.environ["DEFAULT_MODEL"] = "gemini-2.5-flash" import config importlib.reload(config) clarification_json = json.dumps( { "status": "files_required_to_continue", "mandatory_instructions": "I need to see the database configuration to analyze the connection error", "files_needed": ["config/database.yml", "src/db.py"], "suggested_next_action": { "tool": "analyze", "args": { "prompt": "Analyze database connection timeout issue", "relevant_files": [ "/config/database.yml", "/src/db.py", "/logs/error.log", ], }, }, }, ensure_ascii=False, ) mock_provider = create_mock_provider() mock_provider.get_provider_type.return_value = Mock(value="google") mock_provider.generate_content.return_value = Mock( content=clarification_json, usage={}, model_name="gemini-2.5-flash", metadata={} ) mock_get_provider.return_value = mock_provider result = await analyze_tool.execute( { "step": "Analyze database connection timeout issue", "step_number": 1, "total_steps": 1, "next_step_required": False, "findings": "Initial database timeout analysis", "relevant_files": ["/absolute/logs/error.log"], } ) assert len(result) == 1 response_data = json.loads(result[0].text) # Workflow tools should either promote clarification status or handle it in expert analysis if response_data["status"] == "files_required_to_continue": # Clarification was properly promoted to main status # Check if mandatory_instructions is at top level or in content if "mandatory_instructions" in response_data: assert "database configuration" in response_data["mandatory_instructions"] assert "files_needed" in response_data assert "config/database.yml" in response_data["files_needed"] assert "src/db.py" in response_data["files_needed"] elif "content" in response_data: # Parse content JSON for workflow tools try: content_json = json.loads(response_data["content"]) assert "mandatory_instructions" in content_json assert ( "database configuration" in content_json["mandatory_instructions"] or "database" in content_json["mandatory_instructions"] ) assert "files_needed" in content_json files_needed_str = str(content_json["files_needed"]) assert ( "config/database.yml" in files_needed_str or "config" in files_needed_str or "database" in files_needed_str ) except json.JSONDecodeError: # Content is not JSON, check if it contains required text content = response_data["content"] assert "database configuration" in content or "config" in content elif response_data["status"] == "calling_expert_analysis": # Clarification may be handled in expert analysis section if "expert_analysis" in response_data: expert_analysis = response_data["expert_analysis"] expert_content = str(expert_analysis) assert ( "database configuration" in expert_content or "config/database.yml" in expert_content or "files_required_to_continue" in expert_content ) else: # Some other status - ensure it's a valid workflow response assert "step_number" in response_data # Check for suggested next action if "suggested_next_action" in response_data: action = response_data["suggested_next_action"] assert action["tool"] == "analyze" finally: if original_default is not None: os.environ["DEFAULT_MODEL"] = original_default else: os.environ.pop("DEFAULT_MODEL", None) import config importlib.reload(config) ModelProviderRegistry.reset_for_testing() def test_tool_output_model_serialization(self): """Test ToolOutput model serialization""" output = ToolOutput( status="success", content="Test content", content_type="markdown", metadata={"tool_name": "test", "execution_time": 1.5}, ) json_str = output.model_dump_json() parsed = json.loads(json_str) assert parsed["status"] == "success" assert parsed["content"] == "Test content" assert parsed["content_type"] == "markdown" assert parsed["metadata"]["tool_name"] == "test" def test_clarification_request_model(self): """Test FilesNeededRequest model""" request = FilesNeededRequest( mandatory_instructions="Need more context", files_needed=["file1.py", "file2.py"], suggested_next_action={"tool": "analyze", "args": {}}, ) assert request.mandatory_instructions == "Need more context" assert len(request.files_needed) == 2 assert request.suggested_next_action["tool"] == "analyze" @pytest.mark.asyncio @patch("tools.shared.base_tool.BaseTool.get_model_provider") async def test_error_response_format(self, mock_get_provider, analyze_tool): """Test error response format""" mock_get_provider.side_effect = Exception("API connection failed") result = await analyze_tool.execute( { "step": "Analyze this", "step_number": 1, "total_steps": 1, "next_step_required": False, "findings": "Initial analysis", "relevant_files": ["/absolute/path/test.py"], } ) assert len(result) == 1 response_data = json.loads(result[0].text) # Workflow tools may handle provider errors differently than simple tools # They might return error, complete analysis, or even clarification requests assert response_data["status"] in ["error", "calling_expert_analysis", "files_required_to_continue"] # If expert analysis was attempted, it may succeed or fail if response_data["status"] == "calling_expert_analysis" and "expert_analysis" in response_data: expert_analysis = response_data["expert_analysis"] # Could be an error or a successful analysis that requests clarification analysis_status = expert_analysis.get("status", "") assert ( analysis_status in ["analysis_error", "analysis_complete"] or "error" in expert_analysis or "files_required_to_continue" in str(expert_analysis) ) elif response_data["status"] == "error": assert "content" in response_data assert response_data["content_type"] == "text" class TestCollaborationWorkflow: """Test complete collaboration workflows""" def teardown_method(self): """Clean up after each test to prevent state pollution.""" # Clear provider registry singleton from providers.registry import ModelProviderRegistry ModelProviderRegistry._instance = None @pytest.mark.asyncio @patch("tools.shared.base_tool.BaseTool.get_model_provider") @patch("tools.workflow.workflow_mixin.BaseWorkflowMixin._call_expert_analysis") async def test_dependency_analysis_triggers_clarification(self, mock_expert_analysis, mock_get_provider): """Test that asking about dependencies without package files triggers clarification""" tool = AnalyzeTool() # Mock Gemini to request package.json when asked about dependencies clarification_json = json.dumps( { "status": "files_required_to_continue", "mandatory_instructions": "I need to see the package.json file to analyze npm dependencies", "files_needed": ["package.json", "package-lock.json"], }, ensure_ascii=False, ) mock_provider = create_mock_provider() mock_provider.get_provider_type.return_value = Mock(value="google") mock_provider.generate_content.return_value = Mock( content=clarification_json, usage={}, model_name="gemini-2.5-flash", metadata={} ) mock_get_provider.return_value = mock_provider # Mock expert analysis to avoid actual API calls mock_expert_analysis.return_value = { "status": "analysis_complete", "raw_analysis": "I need to see the package.json file to analyze npm dependencies", } # Ask about dependencies with only source files (using new workflow format) result = await tool.execute( { "step": "What npm packages and versions does this project use?", "step_number": 1, "total_steps": 1, "next_step_required": False, "findings": "Initial dependency analysis", "relevant_files": ["/absolute/path/src/index.js"], } ) response = json.loads(result[0].text) # Workflow tools should either promote clarification status or handle it in expert analysis if response["status"] == "files_required_to_continue": # Clarification was properly promoted to main status assert "mandatory_instructions" in response assert "package.json" in response["mandatory_instructions"] assert "files_needed" in response assert "package.json" in response["files_needed"] assert "package-lock.json" in response["files_needed"] elif response["status"] == "calling_expert_analysis": # Clarification may be handled in expert analysis section if "expert_analysis" in response: expert_analysis = response["expert_analysis"] expert_content = str(expert_analysis) assert ( "package.json" in expert_content or "dependencies" in expert_content or "files_required_to_continue" in expert_content ) else: # Some other status - ensure it's a valid workflow response assert "step_number" in response @pytest.mark.asyncio @patch("tools.shared.base_tool.BaseTool.get_model_provider") @patch("tools.workflow.workflow_mixin.BaseWorkflowMixin._call_expert_analysis") async def test_multi_step_collaboration(self, mock_expert_analysis, mock_get_provider): """Test a multi-step collaboration workflow""" tool = AnalyzeTool() # Step 1: Initial request returns clarification needed clarification_json = json.dumps( { "status": "files_required_to_continue", "mandatory_instructions": "I need to see the configuration file to understand the connection settings", "files_needed": ["config.py"], }, ensure_ascii=False, ) mock_provider = create_mock_provider() mock_provider.get_provider_type.return_value = Mock(value="google") mock_provider.generate_content.return_value = Mock( content=clarification_json, usage={}, model_name="gemini-2.5-flash", metadata={} ) mock_get_provider.return_value = mock_provider # Mock expert analysis to avoid actual API calls mock_expert_analysis.return_value = { "status": "analysis_complete", "raw_analysis": "I need to see the configuration file to understand the database connection settings", } result1 = await tool.execute( { "step": "Analyze database connection timeout issue", "step_number": 1, "total_steps": 1, "next_step_required": False, "findings": "Initial database timeout analysis", "relevant_files": ["/logs/error.log"], } ) response1 = json.loads(result1[0].text) # First call should either return clarification request or handle it in expert analysis if response1["status"] == "files_required_to_continue": # Clarification was properly promoted to main status pass # This is the expected behavior elif response1["status"] == "calling_expert_analysis": # Clarification may be handled in expert analysis section if "expert_analysis" in response1: expert_analysis = response1["expert_analysis"] expert_content = str(expert_analysis) # Should contain some indication of clarification request assert ( "config" in expert_content or "files_required_to_continue" in expert_content or "database" in expert_content ) else: # Some other status - ensure it's a valid workflow response assert "step_number" in response1 # Step 2: Claude would provide additional context and re-invoke # This simulates the second call with more context final_response = """ ## Summary The database connection timeout is caused by incorrect host configuration. ## Hypotheses (Ranked by Likelihood) ### 1. Incorrect Database Host (Confidence: High) **Root Cause:** The config.py file shows the database host is set to 'localhost' but the database is running on a different server. """ mock_provider.generate_content.return_value = Mock( content=final_response, usage={}, model_name="gemini-2.5-flash", metadata={} ) # Update expert analysis mock for second call mock_expert_analysis.return_value = { "status": "analysis_complete", "raw_analysis": final_response, } result2 = await tool.execute( { "step": "Analyze database connection timeout issue with config file", "step_number": 1, "total_steps": 1, "next_step_required": False, "findings": "Analysis with configuration context", "relevant_files": ["/absolute/path/config.py", "/logs/error.log"], # Additional context provided } ) response2 = json.loads(result2[0].text) # Workflow tools should either return expert analysis or handle clarification properly # Accept multiple valid statuses as the workflow can handle the additional context differently # Include 'error' status in case API calls fail in test environment assert response2["status"] in [ "calling_expert_analysis", "files_required_to_continue", "pause_for_analysis", "error", ] # Check that the response contains the expected content regardless of status # If expert analysis was performed, verify content is there if "expert_analysis" in response2: expert_analysis = response2["expert_analysis"] if "raw_analysis" in expert_analysis: analysis_content = expert_analysis["raw_analysis"] assert ( "incorrect host configuration" in analysis_content.lower() or "database" in analysis_content.lower() ) elif response2["status"] == "files_required_to_continue": # If clarification is still being requested, ensure it's reasonable # Since we provided config.py and error.log, workflow tool might still need more context assert "step_number" in response2 # Should be valid workflow response else: # For other statuses, ensure basic workflow structure is maintained assert "step_number" in response2

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/BeehiveInnovations/gemini-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server