Skip to main content
Glama

Gemini MCP Server

test_conversation_missing_files.pyโ€ข2.43 kB
""" Test conversation memory handling of missing files. Following existing test patterns to ensure conversation memory gracefully handles missing files without crashing. """ from unittest.mock import Mock from utils.conversation_memory import ( ConversationTurn, ThreadContext, build_conversation_history, ) class TestConversationMissingFiles: """Test handling of missing files during conversation memory reconstruction.""" def test_build_conversation_history_handles_missing_files(self): """Test that conversation history building handles missing files gracefully.""" # Create conversation context with missing file reference (following existing test patterns) context = ThreadContext( thread_id="test-thread", created_at="2024-01-01T00:00:00Z", last_updated_at="2024-01-01T00:05:00Z", tool_name="analyze", turns=[ ConversationTurn( role="user", content="Please analyze this file", timestamp="2024-01-01T00:01:00Z", files=["/nonexistent/missing_file.py"], # File that doesn't exist tool_name="analyze", ), ConversationTurn( role="assistant", content="Here's my analysis...", timestamp="2024-01-01T00:02:00Z", tool_name="analyze", ), ], initial_context={"path": "/nonexistent/missing_file.py"}, ) # Mock model context (following existing test patterns) mock_model_context = Mock() mock_model_context.calculate_token_allocation.return_value = Mock(file_tokens=50000, history_tokens=50000) mock_model_context.estimate_tokens.return_value = 100 mock_model_context.model_name = "test-model" # Should not crash, should handle missing file gracefully history, tokens = build_conversation_history(context, mock_model_context) # Should return valid history despite missing file assert isinstance(history, str) assert isinstance(tokens, int) assert len(history) > 0 # Should contain conversation content assert "CONVERSATION HISTORY" in history assert "Please analyze this file" in history assert "Here's my analysis" in history

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/BeehiveInnovations/gemini-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server