http_transport_recorder.pyโข18.2 kB
#!/usr/bin/env python3
"""
HTTP Transport Recorder for O3-Pro Testing
Custom httpx transport solution that replaces respx for recording/replaying
HTTP interactions. Provides full control over the recording process without
respx limitations.
Key Features:
- RecordingTransport: Wraps default transport, captures real HTTP calls
- ReplayTransport: Serves saved responses from cassettes
- TransportFactory: Auto-selects record vs replay mode
- JSON cassette format with data sanitization
"""
import base64
import hashlib
import json
import logging
from pathlib import Path
from typing import Any, Optional
import httpx
from .pii_sanitizer import PIISanitizer
logger = logging.getLogger(__name__)
class RecordingTransport(httpx.HTTPTransport):
"""Transport that wraps default httpx transport and records all interactions."""
def __init__(self, cassette_path: str, capture_content: bool = True, sanitize: bool = True):
super().__init__()
self.cassette_path = Path(cassette_path)
self.recorded_interactions = []
self.capture_content = capture_content
self.sanitizer = PIISanitizer() if sanitize else None
def handle_request(self, request: httpx.Request) -> httpx.Response:
"""Handle request by recording interaction and delegating to real transport."""
logger.debug(f"RecordingTransport: Making request to {request.method} {request.url}")
# Record request BEFORE making the call
request_data = self._serialize_request(request)
# Make real HTTP call using parent transport
response = super().handle_request(request)
logger.debug(f"RecordingTransport: Got response {response.status_code}")
# Post-response content capture (proper approach)
if self.capture_content:
try:
# Consume the response stream to capture content
# Note: httpx automatically handles gzip decompression
content_bytes = response.read()
response.close() # Close the original stream
logger.debug(f"RecordingTransport: Captured {len(content_bytes)} bytes")
# Serialize response with captured content
response_data = self._serialize_response_with_content(response, content_bytes)
# Create a new response with the same metadata but buffered content
# If the original response was gzipped, we need to re-compress
response_content = content_bytes
if response.headers.get("content-encoding") == "gzip":
import gzip
response_content = gzip.compress(content_bytes)
logger.debug(f"Re-compressed content: {len(content_bytes)} โ {len(response_content)} bytes")
new_response = httpx.Response(
status_code=response.status_code,
headers=response.headers, # Keep original headers intact
content=response_content,
request=request,
extensions=response.extensions,
history=response.history,
)
# Record the interaction
self._record_interaction(request_data, response_data)
return new_response
except Exception:
logger.warning("Content capture failed, falling back to stub", exc_info=True)
response_data = self._serialize_response(response)
self._record_interaction(request_data, response_data)
return response
else:
# Legacy mode: record with stub content
response_data = self._serialize_response(response)
self._record_interaction(request_data, response_data)
return response
def _record_interaction(self, request_data: dict[str, Any], response_data: dict[str, Any]):
"""Helper method to record interaction and save cassette."""
interaction = {"request": request_data, "response": response_data}
self.recorded_interactions.append(interaction)
self._save_cassette()
logger.debug(f"Saved cassette to {self.cassette_path}")
def _serialize_request(self, request: httpx.Request) -> dict[str, Any]:
"""Serialize httpx.Request to JSON-compatible format."""
# For requests, we can safely read the content since it's already been prepared
# httpx.Request.content is safe to access multiple times
content = request.content
# Convert bytes to string for JSON serialization
if isinstance(content, bytes):
try:
content_str = content.decode("utf-8")
except UnicodeDecodeError:
# Handle binary content (shouldn't happen for o3-pro API)
content_str = content.hex()
else:
content_str = str(content) if content else ""
request_data = {
"method": request.method,
"url": str(request.url),
"path": request.url.path,
"headers": dict(request.headers),
"content": self._sanitize_request_content(content_str),
}
# Apply PII sanitization if enabled
if self.sanitizer:
request_data = self.sanitizer.sanitize_request(request_data)
return request_data
def _serialize_response(self, response: httpx.Response) -> dict[str, Any]:
"""Serialize httpx.Response to JSON-compatible format (legacy method without content)."""
# Legacy method for backward compatibility when content capture is disabled
return {
"status_code": response.status_code,
"headers": dict(response.headers),
"content": {"note": "Response content not recorded to avoid httpx.ResponseNotRead exception"},
"reason_phrase": response.reason_phrase,
}
def _serialize_response_with_content(self, response: httpx.Response, content_bytes: bytes) -> dict[str, Any]:
"""Serialize httpx.Response with captured content."""
try:
# Debug: check what we got
# Ensure we have bytes for base64 encoding
if not isinstance(content_bytes, bytes):
logger.warning(f"Content is not bytes, converting from {type(content_bytes)}")
if isinstance(content_bytes, str):
content_bytes = content_bytes.encode("utf-8")
else:
content_bytes = str(content_bytes).encode("utf-8")
# Encode content as base64 for JSON storage
content_b64 = base64.b64encode(content_bytes).decode("utf-8")
logger.debug(f"Base64 encoded {len(content_bytes)} bytes โ {len(content_b64)} chars")
response_data = {
"status_code": response.status_code,
"headers": dict(response.headers),
"content": {"data": content_b64, "encoding": "base64", "size": len(content_bytes)},
"reason_phrase": response.reason_phrase,
}
# Apply PII sanitization if enabled
if self.sanitizer:
response_data = self.sanitizer.sanitize_response(response_data)
return response_data
except Exception as e:
logger.exception("Error in _serialize_response_with_content")
# Fall back to minimal info
return {
"status_code": response.status_code,
"headers": dict(response.headers),
"content": {"error": f"Failed to serialize content: {e}"},
"reason_phrase": response.reason_phrase,
}
def _sanitize_request_content(self, content: str) -> Any:
"""Sanitize request content to remove sensitive data."""
try:
if content.strip():
data = json.loads(content)
# Don't sanitize request content for now - it's user input
return data
except json.JSONDecodeError:
pass
return content
def _save_cassette(self):
"""Save recorded interactions to cassette file."""
# Ensure directory exists
self.cassette_path.parent.mkdir(parents=True, exist_ok=True)
# Save cassette
cassette_data = {"interactions": self.recorded_interactions}
self.cassette_path.write_text(json.dumps(cassette_data, indent=2, sort_keys=True))
class ReplayTransport(httpx.MockTransport):
"""Transport that replays saved HTTP interactions from cassettes."""
def __init__(self, cassette_path: str):
self.cassette_path = Path(cassette_path)
self.interactions = self._load_cassette()
super().__init__(self._handle_request)
def _load_cassette(self) -> list:
"""Load interactions from cassette file."""
if not self.cassette_path.exists():
raise FileNotFoundError(f"Cassette file not found: {self.cassette_path}")
try:
cassette_data = json.loads(self.cassette_path.read_text())
return cassette_data.get("interactions", [])
except json.JSONDecodeError as e:
raise ValueError(f"Invalid cassette file format: {e}")
def _handle_request(self, request: httpx.Request) -> httpx.Response:
"""Handle request by finding matching interaction and returning saved response."""
logger.debug(f"ReplayTransport: Looking for {request.method} {request.url}")
# Debug: show what we're trying to match
request_signature = self._get_request_signature(request)
logger.debug(f"Request signature: {request_signature}")
# Find matching interaction
interaction = self._find_matching_interaction(request)
if not interaction:
logger.warning("No matching interaction found in cassette")
raise ValueError(f"No matching interaction found for {request.method} {request.url}")
logger.debug("Found matching interaction in cassette")
# Build response from saved data
response_data = interaction["response"]
# Convert content back to appropriate format
content = response_data.get("content", {})
if isinstance(content, dict):
# Check if this is base64-encoded content
if content.get("encoding") == "base64" and "data" in content:
# Decode base64 content
try:
content_bytes = base64.b64decode(content["data"])
logger.debug(f"Decoded {len(content_bytes)} bytes from base64")
except Exception as e:
logger.warning(f"Failed to decode base64 content: {e}")
content_bytes = json.dumps(content).encode("utf-8")
else:
# Legacy format or stub content
content_bytes = json.dumps(content).encode("utf-8")
else:
content_bytes = str(content).encode("utf-8")
# Check if response expects gzipped content
headers = response_data.get("headers", {})
if headers.get("content-encoding") == "gzip":
# Re-compress the content for httpx
import gzip
content_bytes = gzip.compress(content_bytes)
logger.debug(f"Re-compressed for replay: {len(content_bytes)} bytes")
logger.debug(f"Returning cassette response ({len(content_bytes)} bytes)")
# Create httpx.Response
return httpx.Response(
status_code=response_data["status_code"],
headers=response_data.get("headers", {}),
content=content_bytes,
request=request,
)
def _find_matching_interaction(self, request: httpx.Request) -> Optional[dict[str, Any]]:
"""Find interaction that matches the request."""
request_signature = self._get_request_signature(request)
for interaction in self.interactions:
saved_signature = self._get_saved_request_signature(interaction["request"])
if request_signature == saved_signature:
return interaction
return None
def _get_request_signature(self, request: httpx.Request) -> str:
"""Generate signature for request matching.
Uses semantic matching for o3 models to avoid cassette breaks from prompt changes.
For o3 models, matches on model name and user prompt only, ignoring system prompts
that may change between code versions.
"""
# Use method, path, and content hash for matching
content = request.content
if hasattr(content, "read"):
content = content.read()
if isinstance(content, bytes):
content_str = content.decode("utf-8", errors="ignore")
else:
content_str = str(content) if content else ""
# Parse JSON and re-serialize with sorted keys for consistent hashing
try:
if content_str.strip():
content_dict = json.loads(content_str)
# For o3 models, use semantic matching to avoid cassette breaks
if self._is_o3_model_request(content_dict):
# Extract only the essential fields for matching
semantic_dict = self._extract_semantic_fields(content_dict)
content_str = json.dumps(semantic_dict, sort_keys=True)
else:
content_str = json.dumps(content_dict, sort_keys=True)
except json.JSONDecodeError:
# Not JSON, use as-is
pass
# Create hash of content for stable matching
content_hash = hashlib.md5(content_str.encode()).hexdigest()
return f"{request.method}:{request.url.path}:{content_hash}"
def _is_o3_model_request(self, content_dict: dict) -> bool:
"""Check if this is an o3 model request."""
model = content_dict.get("model", "")
return model.startswith("o3")
def _extract_semantic_fields(self, content_dict: dict) -> dict:
"""Extract only semantic fields for matching, ignoring volatile prompts.
For o3 models, we want to match on:
- Model name
- User's actual question (last user message)
- Core parameters (temperature, reasoning effort)
We ignore:
- System prompts (change frequently with code updates)
- Conversation memory instructions (change with features)
"""
semantic = {
"model": content_dict.get("model"),
"reasoning": content_dict.get("reasoning"),
}
# Extract only the last user message (actual user question)
input_messages = content_dict.get("input", [])
if input_messages:
# Get the last user message content
last_msg = input_messages[-1]
if isinstance(last_msg, dict) and last_msg.get("role") == "user":
content = last_msg.get("content", [])
if isinstance(content, list) and len(content) > 0:
# Extract just the text from the last message
last_text = content[-1].get("text", "")
# Only include the actual question, not the system instructions
if "=== USER REQUEST ===" in last_text:
# Extract just the user question
parts = last_text.split("=== USER REQUEST ===")
if len(parts) > 1:
user_question = parts[1].split("=== END REQUEST ===")[0].strip()
semantic["user_question"] = user_question
else:
semantic["user_question"] = last_text
return semantic
def _get_saved_request_signature(self, saved_request: dict[str, Any]) -> str:
"""Generate signature for saved request."""
method = saved_request["method"]
path = saved_request["path"]
# Hash the saved content
content = saved_request.get("content", "")
if isinstance(content, dict):
# Apply same semantic matching for o3 models
if self._is_o3_model_request(content):
content = self._extract_semantic_fields(content)
content_str = json.dumps(content, sort_keys=True)
else:
content_str = str(content)
content_hash = hashlib.md5(content_str.encode()).hexdigest()
return f"{method}:{path}:{content_hash}"
class TransportFactory:
"""Factory for creating appropriate transport based on cassette availability."""
@staticmethod
def create_transport(cassette_path: str) -> httpx.HTTPTransport:
"""Create transport based on cassette existence and API key availability."""
cassette_file = Path(cassette_path)
# Check if we should record or replay
if cassette_file.exists():
# Cassette exists - use replay mode
return ReplayTransport(cassette_path)
else:
# No cassette - use recording mode
# Note: We'll check for API key in the test itself
return RecordingTransport(cassette_path)
@staticmethod
def should_record(cassette_path: str, api_key: Optional[str] = None) -> bool:
"""Determine if we should record based on cassette and API key availability."""
cassette_file = Path(cassette_path)
# Record if cassette doesn't exist AND we have API key
return not cassette_file.exists() and bool(api_key)
@staticmethod
def should_replay(cassette_path: str) -> bool:
"""Determine if we should replay based on cassette availability."""
cassette_file = Path(cassette_path)
return cassette_file.exists()
# Example usage:
#
# # In test setup:
# cassette_path = "tests/cassettes/o3_pro_basic_math.json"
# transport = TransportFactory.create_transport(cassette_path)
#
# # Inject into OpenAI client:
# provider._test_transport = transport
#
# # The provider's client property will detect _test_transport and use it