Skip to main content
Glama

Gemini MCP Server

http_transport_recorder.pyโ€ข18.2 kB
#!/usr/bin/env python3 """ HTTP Transport Recorder for O3-Pro Testing Custom httpx transport solution that replaces respx for recording/replaying HTTP interactions. Provides full control over the recording process without respx limitations. Key Features: - RecordingTransport: Wraps default transport, captures real HTTP calls - ReplayTransport: Serves saved responses from cassettes - TransportFactory: Auto-selects record vs replay mode - JSON cassette format with data sanitization """ import base64 import hashlib import json import logging from pathlib import Path from typing import Any, Optional import httpx from .pii_sanitizer import PIISanitizer logger = logging.getLogger(__name__) class RecordingTransport(httpx.HTTPTransport): """Transport that wraps default httpx transport and records all interactions.""" def __init__(self, cassette_path: str, capture_content: bool = True, sanitize: bool = True): super().__init__() self.cassette_path = Path(cassette_path) self.recorded_interactions = [] self.capture_content = capture_content self.sanitizer = PIISanitizer() if sanitize else None def handle_request(self, request: httpx.Request) -> httpx.Response: """Handle request by recording interaction and delegating to real transport.""" logger.debug(f"RecordingTransport: Making request to {request.method} {request.url}") # Record request BEFORE making the call request_data = self._serialize_request(request) # Make real HTTP call using parent transport response = super().handle_request(request) logger.debug(f"RecordingTransport: Got response {response.status_code}") # Post-response content capture (proper approach) if self.capture_content: try: # Consume the response stream to capture content # Note: httpx automatically handles gzip decompression content_bytes = response.read() response.close() # Close the original stream logger.debug(f"RecordingTransport: Captured {len(content_bytes)} bytes") # Serialize response with captured content response_data = self._serialize_response_with_content(response, content_bytes) # Create a new response with the same metadata but buffered content # If the original response was gzipped, we need to re-compress response_content = content_bytes if response.headers.get("content-encoding") == "gzip": import gzip response_content = gzip.compress(content_bytes) logger.debug(f"Re-compressed content: {len(content_bytes)} โ†’ {len(response_content)} bytes") new_response = httpx.Response( status_code=response.status_code, headers=response.headers, # Keep original headers intact content=response_content, request=request, extensions=response.extensions, history=response.history, ) # Record the interaction self._record_interaction(request_data, response_data) return new_response except Exception: logger.warning("Content capture failed, falling back to stub", exc_info=True) response_data = self._serialize_response(response) self._record_interaction(request_data, response_data) return response else: # Legacy mode: record with stub content response_data = self._serialize_response(response) self._record_interaction(request_data, response_data) return response def _record_interaction(self, request_data: dict[str, Any], response_data: dict[str, Any]): """Helper method to record interaction and save cassette.""" interaction = {"request": request_data, "response": response_data} self.recorded_interactions.append(interaction) self._save_cassette() logger.debug(f"Saved cassette to {self.cassette_path}") def _serialize_request(self, request: httpx.Request) -> dict[str, Any]: """Serialize httpx.Request to JSON-compatible format.""" # For requests, we can safely read the content since it's already been prepared # httpx.Request.content is safe to access multiple times content = request.content # Convert bytes to string for JSON serialization if isinstance(content, bytes): try: content_str = content.decode("utf-8") except UnicodeDecodeError: # Handle binary content (shouldn't happen for o3-pro API) content_str = content.hex() else: content_str = str(content) if content else "" request_data = { "method": request.method, "url": str(request.url), "path": request.url.path, "headers": dict(request.headers), "content": self._sanitize_request_content(content_str), } # Apply PII sanitization if enabled if self.sanitizer: request_data = self.sanitizer.sanitize_request(request_data) return request_data def _serialize_response(self, response: httpx.Response) -> dict[str, Any]: """Serialize httpx.Response to JSON-compatible format (legacy method without content).""" # Legacy method for backward compatibility when content capture is disabled return { "status_code": response.status_code, "headers": dict(response.headers), "content": {"note": "Response content not recorded to avoid httpx.ResponseNotRead exception"}, "reason_phrase": response.reason_phrase, } def _serialize_response_with_content(self, response: httpx.Response, content_bytes: bytes) -> dict[str, Any]: """Serialize httpx.Response with captured content.""" try: # Debug: check what we got # Ensure we have bytes for base64 encoding if not isinstance(content_bytes, bytes): logger.warning(f"Content is not bytes, converting from {type(content_bytes)}") if isinstance(content_bytes, str): content_bytes = content_bytes.encode("utf-8") else: content_bytes = str(content_bytes).encode("utf-8") # Encode content as base64 for JSON storage content_b64 = base64.b64encode(content_bytes).decode("utf-8") logger.debug(f"Base64 encoded {len(content_bytes)} bytes โ†’ {len(content_b64)} chars") response_data = { "status_code": response.status_code, "headers": dict(response.headers), "content": {"data": content_b64, "encoding": "base64", "size": len(content_bytes)}, "reason_phrase": response.reason_phrase, } # Apply PII sanitization if enabled if self.sanitizer: response_data = self.sanitizer.sanitize_response(response_data) return response_data except Exception as e: logger.exception("Error in _serialize_response_with_content") # Fall back to minimal info return { "status_code": response.status_code, "headers": dict(response.headers), "content": {"error": f"Failed to serialize content: {e}"}, "reason_phrase": response.reason_phrase, } def _sanitize_request_content(self, content: str) -> Any: """Sanitize request content to remove sensitive data.""" try: if content.strip(): data = json.loads(content) # Don't sanitize request content for now - it's user input return data except json.JSONDecodeError: pass return content def _save_cassette(self): """Save recorded interactions to cassette file.""" # Ensure directory exists self.cassette_path.parent.mkdir(parents=True, exist_ok=True) # Save cassette cassette_data = {"interactions": self.recorded_interactions} self.cassette_path.write_text(json.dumps(cassette_data, indent=2, sort_keys=True)) class ReplayTransport(httpx.MockTransport): """Transport that replays saved HTTP interactions from cassettes.""" def __init__(self, cassette_path: str): self.cassette_path = Path(cassette_path) self.interactions = self._load_cassette() super().__init__(self._handle_request) def _load_cassette(self) -> list: """Load interactions from cassette file.""" if not self.cassette_path.exists(): raise FileNotFoundError(f"Cassette file not found: {self.cassette_path}") try: cassette_data = json.loads(self.cassette_path.read_text()) return cassette_data.get("interactions", []) except json.JSONDecodeError as e: raise ValueError(f"Invalid cassette file format: {e}") def _handle_request(self, request: httpx.Request) -> httpx.Response: """Handle request by finding matching interaction and returning saved response.""" logger.debug(f"ReplayTransport: Looking for {request.method} {request.url}") # Debug: show what we're trying to match request_signature = self._get_request_signature(request) logger.debug(f"Request signature: {request_signature}") # Find matching interaction interaction = self._find_matching_interaction(request) if not interaction: logger.warning("No matching interaction found in cassette") raise ValueError(f"No matching interaction found for {request.method} {request.url}") logger.debug("Found matching interaction in cassette") # Build response from saved data response_data = interaction["response"] # Convert content back to appropriate format content = response_data.get("content", {}) if isinstance(content, dict): # Check if this is base64-encoded content if content.get("encoding") == "base64" and "data" in content: # Decode base64 content try: content_bytes = base64.b64decode(content["data"]) logger.debug(f"Decoded {len(content_bytes)} bytes from base64") except Exception as e: logger.warning(f"Failed to decode base64 content: {e}") content_bytes = json.dumps(content).encode("utf-8") else: # Legacy format or stub content content_bytes = json.dumps(content).encode("utf-8") else: content_bytes = str(content).encode("utf-8") # Check if response expects gzipped content headers = response_data.get("headers", {}) if headers.get("content-encoding") == "gzip": # Re-compress the content for httpx import gzip content_bytes = gzip.compress(content_bytes) logger.debug(f"Re-compressed for replay: {len(content_bytes)} bytes") logger.debug(f"Returning cassette response ({len(content_bytes)} bytes)") # Create httpx.Response return httpx.Response( status_code=response_data["status_code"], headers=response_data.get("headers", {}), content=content_bytes, request=request, ) def _find_matching_interaction(self, request: httpx.Request) -> Optional[dict[str, Any]]: """Find interaction that matches the request.""" request_signature = self._get_request_signature(request) for interaction in self.interactions: saved_signature = self._get_saved_request_signature(interaction["request"]) if request_signature == saved_signature: return interaction return None def _get_request_signature(self, request: httpx.Request) -> str: """Generate signature for request matching. Uses semantic matching for o3 models to avoid cassette breaks from prompt changes. For o3 models, matches on model name and user prompt only, ignoring system prompts that may change between code versions. """ # Use method, path, and content hash for matching content = request.content if hasattr(content, "read"): content = content.read() if isinstance(content, bytes): content_str = content.decode("utf-8", errors="ignore") else: content_str = str(content) if content else "" # Parse JSON and re-serialize with sorted keys for consistent hashing try: if content_str.strip(): content_dict = json.loads(content_str) # For o3 models, use semantic matching to avoid cassette breaks if self._is_o3_model_request(content_dict): # Extract only the essential fields for matching semantic_dict = self._extract_semantic_fields(content_dict) content_str = json.dumps(semantic_dict, sort_keys=True) else: content_str = json.dumps(content_dict, sort_keys=True) except json.JSONDecodeError: # Not JSON, use as-is pass # Create hash of content for stable matching content_hash = hashlib.md5(content_str.encode()).hexdigest() return f"{request.method}:{request.url.path}:{content_hash}" def _is_o3_model_request(self, content_dict: dict) -> bool: """Check if this is an o3 model request.""" model = content_dict.get("model", "") return model.startswith("o3") def _extract_semantic_fields(self, content_dict: dict) -> dict: """Extract only semantic fields for matching, ignoring volatile prompts. For o3 models, we want to match on: - Model name - User's actual question (last user message) - Core parameters (temperature, reasoning effort) We ignore: - System prompts (change frequently with code updates) - Conversation memory instructions (change with features) """ semantic = { "model": content_dict.get("model"), "reasoning": content_dict.get("reasoning"), } # Extract only the last user message (actual user question) input_messages = content_dict.get("input", []) if input_messages: # Get the last user message content last_msg = input_messages[-1] if isinstance(last_msg, dict) and last_msg.get("role") == "user": content = last_msg.get("content", []) if isinstance(content, list) and len(content) > 0: # Extract just the text from the last message last_text = content[-1].get("text", "") # Only include the actual question, not the system instructions if "=== USER REQUEST ===" in last_text: # Extract just the user question parts = last_text.split("=== USER REQUEST ===") if len(parts) > 1: user_question = parts[1].split("=== END REQUEST ===")[0].strip() semantic["user_question"] = user_question else: semantic["user_question"] = last_text return semantic def _get_saved_request_signature(self, saved_request: dict[str, Any]) -> str: """Generate signature for saved request.""" method = saved_request["method"] path = saved_request["path"] # Hash the saved content content = saved_request.get("content", "") if isinstance(content, dict): # Apply same semantic matching for o3 models if self._is_o3_model_request(content): content = self._extract_semantic_fields(content) content_str = json.dumps(content, sort_keys=True) else: content_str = str(content) content_hash = hashlib.md5(content_str.encode()).hexdigest() return f"{method}:{path}:{content_hash}" class TransportFactory: """Factory for creating appropriate transport based on cassette availability.""" @staticmethod def create_transport(cassette_path: str) -> httpx.HTTPTransport: """Create transport based on cassette existence and API key availability.""" cassette_file = Path(cassette_path) # Check if we should record or replay if cassette_file.exists(): # Cassette exists - use replay mode return ReplayTransport(cassette_path) else: # No cassette - use recording mode # Note: We'll check for API key in the test itself return RecordingTransport(cassette_path) @staticmethod def should_record(cassette_path: str, api_key: Optional[str] = None) -> bool: """Determine if we should record based on cassette and API key availability.""" cassette_file = Path(cassette_path) # Record if cassette doesn't exist AND we have API key return not cassette_file.exists() and bool(api_key) @staticmethod def should_replay(cassette_path: str) -> bool: """Determine if we should replay based on cassette availability.""" cassette_file = Path(cassette_path) return cassette_file.exists() # Example usage: # # # In test setup: # cassette_path = "tests/cassettes/o3_pro_basic_math.json" # transport = TransportFactory.create_transport(cassette_path) # # # Inject into OpenAI client: # provider._test_transport = transport # # # The provider's client property will detect _test_transport and use it

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/BeehiveInnovations/gemini-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server