Skip to main content
Glama

@arizeai/phoenix-mcp

Official
by Arize-ai
amazon-bedrock-evals.md2.78 kB
--- description: Configure and run Bedrock for evals --- # Amazon Bedrock Evals ### BedrockModel ```python class BedrockModel: model_id: str = "anthropic.claude-v2" """The model name to use.""" temperature: float = 0.0 """What sampling temperature to use.""" max_tokens: int = 256 """The maximum number of tokens to generate in the completion.""" top_p: float = 1 """Total probability mass of tokens to consider at each step.""" top_k: int = 256 """The cutoff where the model no longer selects the words""" stop_sequences: List[str] = field(default_factory=list) """If the model encounters a stop sequence, it stops generating further tokens. """ session: Any = None """A bedrock session. If provided, a new bedrock client will be created using this session.""" client = None """The bedrock session client. If unset, a new one is created with boto3.""" max_content_size: Optional[int] = None """If you're using a fine-tuned model, set this to the maximum content size""" extra_parameters: Dict[str, Any] = field(default_factory=dict) """Any extra parameters to add to the request body (e.g., countPenalty for a21 models)""" ``` To Authenticate, the following code is used to instantiate a session and the session is used with Phoenix Evals ```python import boto3 # Create a Boto3 session session = boto3.session.Session( aws_access_key_id='ACCESS_KEY', aws_secret_access_key='SECRET_KEY', region_name='us-east-1' # change to your preferred AWS region ) ``` ```python #If you need to assume a role # Creating an STS client sts_client = session.client('sts') # (optional - if needed) Assuming a role response = sts_client.assume_role( RoleArn="arn:aws:iam::......", RoleSessionName="AssumeRoleSession1", #(optional) if MFA Required SerialNumber='arn:aws:iam::...', #Insert current token, needs to be run within x seconds of generation TokenCode='PERIODIC_TOKEN' ) # Your temporary credentials will be available in the response dictionary temporary_credentials = response['Credentials'] # Creating a new Boto3 session with the temporary credentials assumed_role_session = boto3.Session( aws_access_key_id=temporary_credentials['AccessKeyId'], aws_secret_access_key=temporary_credentials['SecretAccessKey'], aws_session_token=temporary_credentials['SessionToken'], region_name='us-east-1' ) ``` ```python client_bedrock = assumed_role_session.client("bedrock-runtime") # Arize Model Object - Bedrock ClaudV2 by default model = BedrockModel(client=client_bedrock) model("Hello there, how are you?") # Output: "As an artificial intelligence, I don't have feelings, # but I'm here and ready to assist you. How can I help you today?" ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'

If you have feedback or need assistance with the MCP directory API, please join our Discord server