Skip to main content
Glama

@arizeai/phoenix-mcp

Official
by Arize-ai
amazon-bedrock-agents-tracing.md2.45 kB
--- description: >- Instrument LLM calls to AWS Bedrock via the boto3 client using the BedrockInstrumentor --- # Amazon Bedrock Agents Tracing {% embed url="https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/integrations/amazon_bedrock_agents_tracing_and_evals.ipynb" %} Amazon Bedrock Agents allow you to easily define, deploy, and manage agents on your AWS infrastructure. Traces on invocations of these agents can be captured using OpenInference and viewed in Phoenix. This instrumentation will capture data on LLM calls, action group invocations (as tools), knowledgebase lookups, and more. ## Launch Phoenix {% include "../../../../phoenix-integrations/.gitbook/includes/sign-up-for-phoenix-sign-up....md" %} ## Install ```bash pip install openinference-instrumentation-bedrock ``` ## Setup Connect to your Phoenix instance using the register function. ```python from phoenix.otel import register # configure the Phoenix tracer tracer_provider = register( project_name="my-llm-app", # Default is 'default' auto_instrument=True # Auto-instrument your app based on installed OI dependencies ) ``` After connecting to your Phoenix server, instrument `boto3` prior to initializing a `bedrock-runtime` client. All clients created after instrumentation will send traces on all calls to `invoke_model`, `invoke_agent`, and their streaming variations. ```python import boto3 session = boto3.session.Session() client = session.client("bedrock-runtime") ``` ## Run Bedrock Agents From here you can run Bedrock as normal ```python session_id = f"default-session1_{int(time.time())}" attributes = dict( inputText=input_text, agentId=AGENT_ID, agentAliasId=AGENT_ALIAS_ID, sessionId=session_id, enableTrace=True, ) response = client.invoke_agent(**attributes) ``` ## Observe Now that you have tracing setup, all calls will be streamed to your running Phoenix for observability and evaluation. <figure><img src="https://storage.googleapis.com/arize-phoenix-assets/assets/images/bedrock-agent-traces-1.png" alt=""><figcaption><p>Bedrock Traces in Phoenix</p></figcaption></figure> ## Resources * [Tracing and Evals example](https://github.com/Arize-ai/phoenix/blob/main/tutorials/integrations/amazon_bedrock_agents_tracing_and_evals.ipynb) * [OpenInference package](https://github.com/Arize-ai/openinference/blob/main/python/instrumentation/openinference-instrumentation-bedrock)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'

If you have feedback or need assistance with the MCP directory API, please join our Discord server