test_valuation_analyzer.pyβ’10.5 kB
"""
Unit tests for ValuationAnalyzer class
TDD Red Phase: Write failing tests for valuation analysis engine
"""
import pytest
import asyncio
from unittest.mock import Mock, AsyncMock, patch
from datetime import datetime, date
from typing import Dict, Any, List, Optional
# Test imports - initially will fail (TDD Red phase)
from src.tools.valuation_tools import ValuationAnalyzer
from src.exceptions import MCPStockDetailsError, InsufficientDataError
class TestValuationAnalyzer:
"""Test cases for ValuationAnalyzer class"""
@pytest.fixture
def valuation_analyzer(self):
"""Create ValuationAnalyzer instance for testing"""
return ValuationAnalyzer()
@pytest.fixture
def sample_financial_data(self):
"""Sample financial data for valuation calculations"""
return {
"company_code": "005930",
"current_price": 73000,
"shares_outstanding": 5_969_782_550,
"market_cap": 435_000_000_000_000,
"financial_metrics": {
"revenue": 258_774_000_000_000,
"net_income": 15_349_000_000_000,
"book_value": 319_684_000_000_000,
"ebitda": 28_500_000_000_000,
"total_debt": 85_000_000_000_000,
"cash": 25_000_000_000_000,
"free_cash_flow": 29_163_000_000_000,
"dividend_per_share": 361,
"eps": 2570 # Earnings per share
}
}
@pytest.mark.asyncio
async def test_calculate_price_multiples(self, valuation_analyzer, sample_financial_data):
"""Test price multiples calculation (PER, PBR, PSR)"""
multiples = await valuation_analyzer.calculate_price_multiples(sample_financial_data)
assert multiples is not None
assert isinstance(multiples, dict)
# Should contain key price multiples
assert "per" in multiples # Price-to-Earnings Ratio
assert "pbr" in multiples # Price-to-Book Ratio
assert "psr" in multiples # Price-to-Sales Ratio
# Values should be reasonable
assert multiples["per"] > 0
assert multiples["pbr"] > 0
assert multiples["psr"] > 0
# Should include additional metrics
assert "market_cap" in multiples
assert "book_value_per_share" in multiples
@pytest.mark.asyncio
async def test_calculate_enterprise_value_multiples(self, valuation_analyzer, sample_financial_data):
"""Test enterprise value multiples calculation"""
ev_multiples = await valuation_analyzer.calculate_ev_multiples(sample_financial_data)
assert ev_multiples is not None
assert isinstance(ev_multiples, dict)
# Should contain EV multiples
assert "ev_ebitda" in ev_multiples
assert "ev_sales" in ev_multiples
assert "ev_fcf" in ev_multiples # EV/Free Cash Flow
# Should include enterprise value calculation
assert "enterprise_value" in ev_multiples
assert "net_debt" in ev_multiples
# Values should be positive
assert ev_multiples["enterprise_value"] > 0
assert ev_multiples["ev_ebitda"] > 0
@pytest.mark.asyncio
async def test_historical_valuation_bands(self, valuation_analyzer):
"""Test historical valuation bands analysis"""
company_code = "005930"
period = "3Y"
bands = await valuation_analyzer.calculate_historical_bands(
company_code=company_code,
period=period,
metrics=["per", "pbr"]
)
assert bands is not None
assert isinstance(bands, dict)
# Should contain band analysis for each metric
for metric in ["per", "pbr"]:
assert metric in bands
metric_bands = bands[metric]
assert "current" in metric_bands
assert "mean" in metric_bands
assert "median" in metric_bands
assert "std_dev" in metric_bands
assert "percentile_25" in metric_bands
assert "percentile_75" in metric_bands
assert "min" in metric_bands
assert "max" in metric_bands
@pytest.mark.asyncio
async def test_peer_valuation_comparison(self, valuation_analyzer):
"""Test peer group valuation comparison"""
company_code = "005930"
industry_code = "26211" # Semiconductor
peer_comparison = await valuation_analyzer.compare_with_peers(
company_code=company_code,
industry_code=industry_code,
metrics=["per", "pbr", "psr", "ev_ebitda"]
)
assert peer_comparison is not None
assert isinstance(peer_comparison, dict)
# Should contain comparison data
assert "company_metrics" in peer_comparison
assert "peer_metrics" in peer_comparison
assert "industry_metrics" in peer_comparison
# Should include percentile ranking
assert "percentile_ranking" in peer_comparison
# Should have peer group information
peer_metrics = peer_comparison["peer_metrics"]
assert "mean" in peer_metrics
assert "median" in peer_metrics
assert "peer_count" in peer_metrics
@pytest.mark.asyncio
async def test_dividend_analysis(self, valuation_analyzer, sample_financial_data):
"""Test dividend yield and payout analysis"""
dividend_analysis = await valuation_analyzer.analyze_dividend_metrics(sample_financial_data)
assert dividend_analysis is not None
assert isinstance(dividend_analysis, dict)
# Should contain dividend metrics
assert "dividend_yield" in dividend_analysis
assert "payout_ratio" in dividend_analysis
assert "dividend_per_share" in dividend_analysis
# Should include dividend sustainability metrics
assert "dividend_coverage" in dividend_analysis
assert "free_cash_flow_payout" in dividend_analysis
# Values should be reasonable
assert 0 <= dividend_analysis["dividend_yield"] <= 20 # 0-20%
assert 0 <= dividend_analysis["payout_ratio"] <= 200 # 0-200%
@pytest.mark.asyncio
async def test_fair_value_estimation(self, valuation_analyzer, sample_financial_data):
"""Test fair value estimation using multiple methods"""
fair_value = await valuation_analyzer.estimate_fair_value(
financial_data=sample_financial_data,
methods=["dcf", "multiple", "dividend_discount"]
)
assert fair_value is not None
assert isinstance(fair_value, dict)
# Should contain different valuation methods
assert "dcf_value" in fair_value
assert "multiple_value" in fair_value
assert "dividend_discount_value" in fair_value
# Should include weighted average
assert "weighted_fair_value" in fair_value
assert "valuation_range" in fair_value
# Should provide investment recommendation
assert "recommendation" in fair_value
assert "upside_downside" in fair_value
# Values should be positive
for method in ["dcf_value", "multiple_value", "weighted_fair_value"]:
if fair_value[method] is not None:
assert fair_value[method] > 0
@pytest.mark.asyncio
async def test_valuation_summary_generation(self, valuation_analyzer, sample_financial_data):
"""Test comprehensive valuation summary generation"""
summary = await valuation_analyzer.generate_valuation_summary(
financial_data=sample_financial_data,
include_peer_comparison=True,
include_historical_analysis=True
)
assert summary is not None
assert isinstance(summary, dict)
# Should contain all major sections
assert "price_multiples" in summary
assert "ev_multiples" in summary
assert "dividend_analysis" in summary
assert "fair_value_analysis" in summary
# Should include overall assessment
assert "valuation_assessment" in summary
assert "key_insights" in summary
assert "risk_factors" in summary
@pytest.mark.asyncio
async def test_error_handling_insufficient_data(self, valuation_analyzer):
"""Test error handling for insufficient data scenarios"""
# Test with incomplete financial data
incomplete_data = {
"company_code": "999999",
"current_price": 1000
# Missing other required fields
}
with pytest.raises(InsufficientDataError):
await valuation_analyzer.calculate_price_multiples(incomplete_data)
@pytest.mark.asyncio
async def test_error_handling_invalid_inputs(self, valuation_analyzer):
"""Test error handling for invalid inputs"""
# Test with negative values
invalid_data = {
"company_code": "005930",
"current_price": -1000, # Invalid negative price
"shares_outstanding": 0, # Invalid zero shares
"financial_metrics": {
"revenue": -100000 # Invalid negative revenue
}
}
with pytest.raises(MCPStockDetailsError):
await valuation_analyzer.calculate_price_multiples(invalid_data)
@pytest.mark.asyncio
async def test_performance_optimization(self, valuation_analyzer, sample_financial_data):
"""Test performance optimization for valuation calculations"""
import time
start_time = time.time()
# Run comprehensive valuation analysis
summary = await valuation_analyzer.generate_valuation_summary(
financial_data=sample_financial_data,
include_peer_comparison=True,
include_historical_analysis=True
)
execution_time = time.time() - start_time
# Should complete within 2 seconds
assert execution_time < 2.0
assert summary is not None
# Should contain substantial analysis
assert len(summary) >= 5 # Multiple analysis sections