test_business_segment_analyzer.pyβ’16.2 kB
"""
Unit tests for BusinessSegmentAnalyzer class
TDD Red Phase: Write failing tests for business segment analysis engine
"""
import pytest
import asyncio
from unittest.mock import Mock, AsyncMock, patch
from datetime import datetime, date, timedelta
from typing import Dict, Any, List, Optional
# Test imports - initially will fail (TDD Red phase)
from src.tools.business_segment_tools import BusinessSegmentAnalyzer
from src.exceptions import MCPStockDetailsError, InsufficientDataError
class TestBusinessSegmentAnalyzer:
"""Test cases for BusinessSegmentAnalyzer class"""
@pytest.fixture
def segment_analyzer(self):
"""Create BusinessSegmentAnalyzer instance for testing"""
return BusinessSegmentAnalyzer()
@pytest.fixture
def sample_segment_data(self):
"""Sample business segment data for analysis"""
return {
"company_code": "005930",
"segments": [
{
"name": "λ°λ체",
"revenue_2023": 63747000000000, "revenue_2022": 76956000000000, "revenue_2021": 83018000000000,
"operating_profit_2023": 3369000000000, "operating_profit_2022": 18325000000000, "operating_profit_2021": 26009000000000,
"assets": 145632000000000, "employees": 85000, "capex": 24500000000000
},
{
"name": "λμ€νλ μ΄ν¨λ",
"revenue_2023": 50148000000000, "revenue_2022": 47543000000000, "revenue_2021": 45897000000000,
"operating_profit_2023": 1561000000000, "operating_profit_2022": 1204000000000, "operating_profit_2021": 895000000000,
"assets": 82451000000000, "employees": 45000, "capex": 8900000000000
},
{
"name": "IM(λͺ¨λ°μΌ)",
"revenue_2023": 124871000000000, "revenue_2022": 118345000000000, "revenue_2021": 109385000000000,
"operating_profit_2023": 8952000000000, "operating_profit_2022": 7825000000000, "operating_profit_2021": 6851000000000,
"assets": 67234000000000, "employees": 92000, "capex": 12300000000000
}
],
"total_revenue_2023": 247674000000000,
"total_operating_profit_2023": 14303000000000
}
@pytest.fixture
def sample_geographic_data(self):
"""Sample geographic segment data for testing"""
return {
"geographic_segments": [
{"region": "νκ΅", "revenue": 75234000000000, "operating_profit": 4521000000000, "assets": 145623000000000},
{"region": "μ€κ΅", "revenue": 58967000000000, "operating_profit": 3214000000000, "assets": 89421000000000},
{"region": "λ―Έκ΅", "revenue": 68453000000000, "operating_profit": 4123000000000, "assets": 67234000000000},
{"region": "μ λ½", "revenue": 25129000000000, "operating_profit": 1524000000000, "assets": 32145000000000},
{"region": "κΈ°ν", "revenue": 19091000000000, "operating_profit": 921000000000, "assets": 18234000000000}
]
}
@pytest.mark.asyncio
async def test_analyze_segment_performance(self, segment_analyzer, sample_segment_data):
"""Test segment performance analysis"""
performance = await segment_analyzer.analyze_segment_performance(
segment_data=sample_segment_data,
analysis_years=3
)
assert performance is not None
assert isinstance(performance, dict)
# Should contain performance metrics for each segment
assert "segment_performance" in performance
assert "performance_ranking" in performance
assert "key_insights" in performance
segment_performance = performance["segment_performance"]
assert len(segment_performance) == 3 # 3 segments
# Each segment should have performance metrics
for segment in segment_performance:
assert "name" in segment
assert "revenue_growth_rate" in segment
assert "operating_margin" in segment
assert "profit_growth_rate" in segment
assert "performance_score" in segment
@pytest.mark.asyncio
async def test_calculate_segment_growth_rates(self, segment_analyzer, sample_segment_data):
"""Test segment growth rate calculation"""
growth_analysis = await segment_analyzer.calculate_segment_growth_rates(
segment_data=sample_segment_data,
growth_period="3Y"
)
assert growth_analysis is not None
assert isinstance(growth_analysis, dict)
# Should contain growth metrics
assert "segment_growth" in growth_analysis
assert "average_growth_rate" in growth_analysis
assert "growth_stability" in growth_analysis
assert "fastest_growing_segment" in growth_analysis
# Should calculate growth rates correctly
segment_growth = growth_analysis["segment_growth"]
semiconductor_growth = next(s for s in segment_growth if s["name"] == "λ°λ체")
# Check semiconductor segment decline (negative growth)
assert semiconductor_growth["cagr"] < 0 # Declining revenue
assert isinstance(semiconductor_growth["revenue_volatility"], float)
@pytest.mark.asyncio
async def test_analyze_segment_profitability(self, segment_analyzer, sample_segment_data):
"""Test segment profitability analysis"""
profitability = await segment_analyzer.analyze_segment_profitability(
segment_data=sample_segment_data,
benchmark_margins={"λ°λ체": 25.5, "λμ€νλ μ΄ν¨λ": 8.2, "IM(λͺ¨λ°μΌ)": 12.1}
)
assert profitability is not None
assert isinstance(profitability, dict)
# Should contain profitability metrics
assert "segment_margins" in profitability
assert "profitability_ranking" in profitability
assert "margin_trends" in profitability
assert "benchmark_comparison" in profitability
# Should calculate margins correctly
segment_margins = profitability["segment_margins"]
mobile_segment = next(s for s in segment_margins if s["name"] == "IM(λͺ¨λ°μΌ)")
# Mobile segment should have positive margin
assert mobile_segment["operating_margin"] > 0
assert mobile_segment["roa"] >= 0 # Return on Assets
@pytest.mark.asyncio
async def test_calculate_segment_concentration(self, segment_analyzer, sample_segment_data):
"""Test segment concentration analysis"""
concentration = await segment_analyzer.calculate_segment_concentration(
segment_data=sample_segment_data,
concentration_metric="revenue"
)
assert concentration is not None
assert isinstance(concentration, dict)
# Should contain concentration metrics
assert "hhi_index" in concentration
assert "top_segment_share" in concentration
assert "concentration_level" in concentration
assert "diversification_score" in concentration
# HHI should be calculated correctly
hhi = concentration["hhi_index"]
assert isinstance(hhi, float)
assert 0 <= hhi <= 10000
# Top segment share should match mobile segment (~50%)
top_share = concentration["top_segment_share"]
assert 45 <= top_share <= 55 # Mobile segment dominance
# Concentration level should be categorical
assert concentration["concentration_level"] in ["low", "moderate", "high", "very_high"]
@pytest.mark.asyncio
async def test_analyze_geographic_segments(self, segment_analyzer, sample_geographic_data):
"""Test geographic segment analysis"""
geographic = await segment_analyzer.analyze_geographic_segments(
geographic_data=sample_geographic_data,
risk_assessment=True
)
assert geographic is not None
assert isinstance(geographic, dict)
# Should contain geographic analysis
assert "regional_performance" in geographic
assert "geographic_concentration" in geographic
assert "market_risk_assessment" in geographic
assert "currency_exposure" in geographic
# Should have regional performance data
regional_performance = geographic["regional_performance"]
assert len(regional_performance) == 5 # 5 regions
# Each region should have metrics
for region in regional_performance:
assert "region" in region
assert "revenue_share" in region
assert "operating_margin" in region
assert "market_risk_score" in region
@pytest.mark.asyncio
async def test_evaluate_competitive_positioning(self, segment_analyzer, sample_segment_data):
"""Test competitive positioning evaluation"""
competitive = await segment_analyzer.evaluate_competitive_positioning(
segment_data=sample_segment_data,
market_data={
"λ°λ체": {"market_size": 574000000000000, "growth_rate": 3.2},
"λμ€νλ μ΄ν¨λ": {"market_size": 165000000000000, "growth_rate": 1.8},
"IM(λͺ¨λ°μΌ)": {"market_size": 512000000000000, "growth_rate": 4.5}
}
)
assert competitive is not None
assert isinstance(competitive, dict)
# Should contain competitive analysis
assert "market_position" in competitive
assert "competitive_advantages" in competitive
assert "market_share_estimates" in competitive
assert "strategic_recommendations" in competitive
# Should analyze market positioning
market_position = competitive["market_position"]
assert len(market_position) == 3 # 3 segments
for position in market_position:
assert "segment" in position
assert "estimated_market_share" in position
assert "competitive_strength" in position
@pytest.mark.asyncio
async def test_assess_segment_risks(self, segment_analyzer, sample_segment_data):
"""Test segment risk assessment"""
risk_assessment = await segment_analyzer.assess_segment_risks(
segment_data=sample_segment_data,
external_factors={
"economic_indicators": {"gdp_growth": 2.1, "inflation": 3.5},
"industry_trends": {"semiconductor": "cyclical_downturn", "mobile": "market_saturation"}
}
)
assert risk_assessment is not None
assert isinstance(risk_assessment, dict)
# Should contain risk assessment
assert "segment_risks" in risk_assessment
assert "risk_concentration" in risk_assessment
assert "overall_risk_score" in risk_assessment
assert "risk_mitigation" in risk_assessment
# Should assess risks for each segment
segment_risks = risk_assessment["segment_risks"]
assert len(segment_risks) == 3
for risk in segment_risks:
assert "segment" in risk
assert "risk_level" in risk
assert "key_risks" in risk
assert "risk_score" in risk
@pytest.mark.asyncio
async def test_generate_segment_insights(self, segment_analyzer, sample_segment_data):
"""Test segment insights generation"""
insights = await segment_analyzer.generate_segment_insights(
segment_data=sample_segment_data,
analysis_context={"industry": "technology", "market_cycle": "mature", "competitive_intensity": "high"}
)
assert insights is not None
assert isinstance(insights, dict)
# Should contain strategic insights
assert "key_findings" in insights
assert "growth_opportunities" in insights
assert "performance_concerns" in insights
assert "strategic_recommendations" in insights
assert "outlook_assessment" in insights
# Each insight should have content
for category in insights.values():
assert isinstance(category, (str, list, dict))
if isinstance(category, list):
assert len(category) > 0
@pytest.mark.asyncio
async def test_comprehensive_segment_analysis(self, segment_analyzer, sample_segment_data):
"""Test comprehensive segment analysis"""
comprehensive = await segment_analyzer.comprehensive_segment_analysis(
company_code="005930",
include_all_metrics=True
)
assert comprehensive is not None
assert isinstance(comprehensive, dict)
# Should contain all major analysis components
assert "segment_overview" in comprehensive
assert "performance_analysis" in comprehensive
assert "growth_analysis" in comprehensive
assert "profitability_analysis" in comprehensive
assert "risk_assessment" in comprehensive
assert "strategic_insights" in comprehensive
# Should have executive summary
if "executive_summary" in comprehensive:
summary = comprehensive["executive_summary"]
assert "key_segments" in summary
assert "performance_highlights" in summary
assert "strategic_priorities" in summary
@pytest.mark.asyncio
async def test_calculate_segment_efficiency_metrics(self, segment_analyzer, sample_segment_data):
"""Test segment efficiency metrics calculation"""
efficiency = await segment_analyzer.calculate_segment_efficiency_metrics(
segment_data=sample_segment_data,
efficiency_benchmarks={"asset_turnover": 1.2, "employee_productivity": 2.8}
)
assert efficiency is not None
assert isinstance(efficiency, dict)
# Should contain efficiency metrics
assert "segment_efficiency" in efficiency
assert "efficiency_ranking" in efficiency
assert "improvement_opportunities" in efficiency
# Should calculate efficiency for each segment
segment_efficiency = efficiency["segment_efficiency"]
assert len(segment_efficiency) == 3
for segment in segment_efficiency:
assert "name" in segment
assert "asset_turnover" in segment
assert "employee_productivity" in segment
assert "efficiency_score" in segment
@pytest.mark.asyncio
async def test_error_handling_insufficient_data(self, segment_analyzer):
"""Test error handling for insufficient data"""
# Test with insufficient segment data
insufficient_data = {"company_code": "005930", "segments": []}
with pytest.raises(InsufficientDataError):
await segment_analyzer.analyze_segment_performance(insufficient_data)
@pytest.mark.asyncio
async def test_error_handling_invalid_parameters(self, segment_analyzer, sample_segment_data):
"""Test error handling for invalid parameters"""
# Test with invalid analysis years
with pytest.raises(MCPStockDetailsError):
await segment_analyzer.analyze_segment_performance(
segment_data=sample_segment_data,
analysis_years=0 # Invalid zero years
)
# Test with invalid growth period
with pytest.raises(MCPStockDetailsError):
await segment_analyzer.calculate_segment_growth_rates(
segment_data=sample_segment_data,
growth_period="invalid_period" # Invalid period format
)