Skip to main content
Glama

MCP Stock Details Server

by whdghk1907

MCP Stock Details Server

Python 3.8+ License: MIT Tests

A comprehensive Model Context Protocol (MCP) server for Korean stock market analysis, providing detailed financial data, analysis tools, and investment insights.

πŸš€ Features

Phase 1 βœ… - Core Infrastructure

  • MCP Server Framework: Model Context Protocol compliant server

  • Data Collection: DART (Data Analysis, Retrieval and Transfer System) integration

  • Caching System: Redis-based caching with memory fallback

  • Error Handling: Comprehensive exception handling and logging

Phase 2 βœ… - Analysis Tools (Weeks 1-5)

Week 1: Company & Financial Analysis

  • get_company_overview: Comprehensive company information

  • get_financial_statements: Income statement, balance sheet, cash flow analysis

Week 2: Financial Ratios & Valuation

  • get_financial_ratios: 50+ financial ratios with industry benchmarks

  • get_valuation_metrics: Multiple valuation approaches (DCF, multiples, etc.)

Week 3: ESG & Technical Analysis

  • get_esg_info: Environmental, Social, Governance analysis

  • get_technical_indicators: Technical analysis indicators (RSI, MACD, etc.)

Week 4: Shareholder & Business Analysis

  • get_shareholder_info: Shareholder structure, governance metrics

  • get_business_segments: Business segment performance analysis

Week 5: Market Analysis

  • get_peer_comparison: Industry peer comparison and benchmarking

  • get_analyst_consensus: Analyst consensus, target prices, investment opinions

Upcoming Features (Phase 3-5)

  • Advanced valuation models (DCF, Monte Carlo simulation)

  • Risk analysis engine (VaR, stress testing)

  • Real-time data pipeline

  • Performance optimization

  • Production deployment

πŸ› οΈ Installation

Prerequisites

  • Python 3.8 or higher

  • Redis (optional, for enhanced caching)

Setup

# Clone the repository git clone https://github.com/yourusername/mcp-stock-details.git cd mcp-stock-details # Create virtual environment python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate # Install dependencies pip install -r requirements.txt # Set up environment variables cp .env.example .env # Edit .env with your DART API key and other settings

Environment Variables

# Required DART_API_KEY=your_dart_api_key_here # Optional REDIS_URL=redis://localhost:6379/0 LOG_LEVEL=INFO CACHE_TTL=3600

πŸš€ Quick Start

Running the Server

# Start the MCP server python -m src.server # Or run with specific configuration python -m src.server --config config/development.json

Using with Claude Desktop

Add to your Claude Desktop MCP configuration:

{ "mcpServers": { "stock-details": { "command": "python", "args": ["-m", "src.server"], "cwd": "/path/to/mcp-stock-details", "env": { "DART_API_KEY": "your_api_key" } } } }

Example Usage

# Get company overview result = await server.call_tool("get_company_overview", { "company_code": "005930", # Samsung Electronics "include_financial_summary": True }) # Analyze financial ratios result = await server.call_tool("get_financial_ratios", { "company_code": "005930", "include_industry_comparison": True, "analysis_period": "3Y" }) # Compare with peers result = await server.call_tool("get_peer_comparison", { "company_code": "005930", "include_valuation_comparison": True, "max_peers": 5 })

πŸ“Š Supported Analysis

Financial Analysis

  • Profitability Ratios: ROE, ROA, Operating Margin, Net Margin

  • Liquidity Ratios: Current Ratio, Quick Ratio, Cash Ratio

  • Leverage Ratios: Debt-to-Equity, Interest Coverage, EBITDA Coverage

  • Efficiency Ratios: Asset Turnover, Inventory Turnover, Receivables Turnover

  • Valuation Ratios: P/E, P/B, EV/EBITDA, PEG Ratio

Advanced Analysis

  • DCF Valuation: Multi-stage dividend discount model

  • Peer Comparison: Industry benchmarking and relative valuation

  • ESG Scoring: Environmental, Social, Governance metrics

  • Technical Indicators: RSI, MACD, Bollinger Bands, Moving Averages

  • Risk Analysis: Beta, VaR, Sharpe Ratio, Maximum Drawdown

Market Intelligence

  • Analyst Consensus: Target prices, investment ratings, earnings estimates

  • Shareholder Analysis: Ownership structure, governance metrics

  • Business Segments: Revenue breakdown, segment performance analysis

πŸ§ͺ Testing

# Run all tests python -m pytest # Run with coverage python -m pytest --cov=src --cov-report=html # Run specific test categories python -m pytest tests/unit/ python -m pytest tests/integration/

πŸ“ Project Structure

mcp-stock-details/ β”œβ”€β”€ src/ β”‚ β”œβ”€β”€ server.py # Main MCP server β”‚ β”œβ”€β”€ config.py # Configuration management β”‚ β”œβ”€β”€ exceptions.py # Custom exceptions β”‚ β”œβ”€β”€ models/ # Data models β”‚ β”œβ”€β”€ tools/ # Analysis tools β”‚ β”‚ β”œβ”€β”€ company_tools.py β”‚ β”‚ β”œβ”€β”€ financial_tools.py β”‚ β”‚ β”œβ”€β”€ valuation_tools.py β”‚ β”‚ β”œβ”€β”€ esg_tools.py β”‚ β”‚ β”œβ”€β”€ technical_tools.py β”‚ β”‚ β”œβ”€β”€ risk_tools.py β”‚ β”‚ β”œβ”€β”€ shareholder_tools.py β”‚ β”‚ β”œβ”€β”€ business_segment_tools.py β”‚ β”‚ β”œβ”€β”€ peer_comparison_tools.py β”‚ β”‚ └── analyst_consensus_tools.py β”‚ β”œβ”€β”€ collectors/ # Data collectors β”‚ β”œβ”€β”€ utils/ # Utility functions β”‚ └── cache/ # Caching system β”œβ”€β”€ tests/ β”‚ β”œβ”€β”€ unit/ # Unit tests β”‚ β”œβ”€β”€ integration/ # Integration tests β”‚ └── fixtures/ # Test data β”œβ”€β”€ config/ # Configuration files β”œβ”€β”€ docs/ # Documentation β”œβ”€β”€ requirements.txt β”œβ”€β”€ development-plan.md └── README.md

πŸ“ˆ Development Status

  • Phase 1: Core Infrastructure (Completed)

  • Phase 2: Analysis Tools - Weeks 1-5 (Completed)

  • Phase 3: Advanced Analysis Engine - Weeks 6-8

  • Phase 4: Performance & Quality - Weeks 9-10

  • Phase 5: Deployment & Operations - Weeks 11-12

See Development Plan for detailed roadmap.

🀝 Contributing

We welcome contributions! Please see our Contributing Guide for details.

Development Setup

# Install development dependencies pip install -r requirements-dev.txt # Install pre-commit hooks pre-commit install # Run tests before committing python -m pytest

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ”— Related Resources

πŸ“ž Support

πŸ™ Acknowledgments

  • DART (κΈˆμœ΅κ°λ…μ›) for providing comprehensive financial data

  • Model Context Protocol team for the excellent framework

  • Korean financial data providers and community


Note: This project is for educational and research purposes. Please ensure compliance with data usage terms and local regulations when using financial data.

-
security - not tested
A
license - permissive license
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

A Model Context Protocol server providing comprehensive Korean stock market analysis, including financial data, valuation metrics, ESG information, and investment insights.

  1. πŸš€ Features
    1. Phase 1 βœ… - Core Infrastructure
    2. Phase 2 βœ… - Analysis Tools (Weeks 1-5)
    3. Upcoming Features (Phase 3-5)
  2. πŸ› οΈ Installation
    1. Prerequisites
    2. Setup
    3. Environment Variables
  3. πŸš€ Quick Start
    1. Running the Server
    2. Using with Claude Desktop
    3. Example Usage
  4. πŸ“Š Supported Analysis
    1. Financial Analysis
    2. Advanced Analysis
    3. Market Intelligence
  5. πŸ§ͺ Testing
    1. πŸ“ Project Structure
      1. πŸ“ˆ Development Status
        1. 🀝 Contributing
          1. Development Setup
        2. πŸ“„ License
          1. πŸ”— Related Resources
            1. πŸ“ž Support
              1. πŸ™ Acknowledgments

                Related MCP Servers

                • A
                  security
                  A
                  license
                  A
                  quality
                  A Model Context Protocol server for interacting with Korea Investment & Securities (KIS) REST API, enabling domestic and foreign stock trading, price checks, and account management.
                  Last updated -
                  10
                  8
                  MIT License
                  • Apple
                • A
                  security
                  A
                  license
                  A
                  quality
                  A Model Context Protocol server providing tools for querying A-share stock market data, including historical prices, financial reports, market indices, and macroeconomic indicators.
                  Last updated -
                  27
                  431
                  MIT License
                • A
                  security
                  A
                  license
                  A
                  quality
                  A Model Context Protocol server focused on China's A-share stock market that provides data on stocks, financials, market indices, and macroeconomic indicators.
                  Last updated -
                  27
                  431
                  MIT License
                • -
                  security
                  F
                  license
                  -
                  quality
                  A custom Model Context Protocol server that provides real-time financial analysis tools including stock monitoring, portfolio management, market summaries, and automated price alerts with Telegram notifications.
                  Last updated -

                View all related MCP servers

                MCP directory API

                We provide all the information about MCP servers via our MCP API.

                curl -X GET 'https://glama.ai/api/mcp/v1/servers/whdghk1907/mcp-stock-details'

                If you have feedback or need assistance with the MCP directory API, please join our Discord server