Skip to main content
Glama

MCP Stock Details Server

by whdghk1907
test_esg_analyzer.pyβ€’11.8 kB
""" Unit tests for ESGAnalyzer class TDD Red Phase: Write failing tests for ESG analysis engine """ import pytest import asyncio from unittest.mock import Mock, AsyncMock, patch from datetime import datetime, date, timedelta from typing import Dict, Any, List, Optional # Test imports - initially will fail (TDD Red phase) from src.tools.esg_tools import ESGAnalyzer from src.exceptions import MCPStockDetailsError, InsufficientDataError class TestESGAnalyzer: """Test cases for ESGAnalyzer class""" @pytest.fixture def esg_analyzer(self): """Create ESGAnalyzer instance for testing""" return ESGAnalyzer() @pytest.fixture def sample_company_data(self): """Sample company data for ESG calculations""" return { "company_code": "005930", "company_name": "Samsung Electronics", "industry": "Technology", "revenue": 258_774_000_000_000, "employees": 267937, "market_cap": 435_000_000_000_000 } @pytest.mark.asyncio async def test_calculate_environmental_score(self, esg_analyzer, sample_company_data): """Test environmental score calculation""" environmental_data = { "carbon_emissions": 12500000, # tons CO2e "energy_consumption": 28500000, # MWh "renewable_energy": 12825000, # MWh "water_usage": 152000000, # cubic meters "waste_generated": 850000, # tons "waste_recycled": 784550 # tons } score = await esg_analyzer.calculate_environmental_score( company_data=sample_company_data, environmental_data=environmental_data ) assert score is not None assert isinstance(score, dict) # Should contain score and grade assert "score" in score assert "grade" in score assert 0 <= score["score"] <= 100 assert score["grade"] in ["A+", "A", "A-", "B+", "B", "B-", "C+", "C", "C-", "D", "F"] # Should include detailed metrics assert "carbon_intensity" in score assert "renewable_ratio" in score assert "recycling_rate" in score @pytest.mark.asyncio async def test_calculate_social_score(self, esg_analyzer, sample_company_data): """Test social score calculation""" social_data = { "employee_turnover": 0.08, # 8% "employee_satisfaction": 4.2, # out of 5 "gender_diversity": { "total": 0.35, "management": 0.22, "board": 0.17 }, "safety_incidents": 12, "training_hours_per_employee": 52, "community_investment": 125000000000 # KRW } score = await esg_analyzer.calculate_social_score( company_data=sample_company_data, social_data=social_data ) assert score is not None assert isinstance(score, dict) # Should contain score and grade assert "score" in score assert "grade" in score # Should include detailed metrics assert "diversity_score" in score assert "safety_score" in score assert "employee_wellbeing_score" in score assert "community_impact_score" in score @pytest.mark.asyncio async def test_calculate_governance_score(self, esg_analyzer, sample_company_data): """Test governance score calculation""" governance_data = { "board_size": 9, "independent_directors": 6, "board_meetings_per_year": 8, "ethics_violations": 2, "audit_issues": 0, "ceo_compensation": 2750000000, # KRW "median_employee_pay": 52500000, # KRW "shareholder_proposals_passed": 3, "shareholder_proposals_total": 5 } score = await esg_analyzer.calculate_governance_score( company_data=sample_company_data, governance_data=governance_data ) assert score is not None assert isinstance(score, dict) # Should contain score and components assert "score" in score assert "board_independence_ratio" in score assert "ethics_score" in score assert "pay_equity_score" in score assert "shareholder_rights_score" in score @pytest.mark.asyncio async def test_aggregate_esg_scores(self, esg_analyzer): """Test ESG score aggregation""" individual_scores = { "environmental": {"score": 82.5, "grade": "A"}, "social": {"score": 78.3, "grade": "B+"}, "governance": {"score": 85.7, "grade": "A"} } total_score = await esg_analyzer.aggregate_esg_scores( individual_scores=individual_scores, weights={"environmental": 0.33, "social": 0.33, "governance": 0.34} ) assert total_score is not None assert isinstance(total_score, dict) # Should contain total score and grade assert "total_score" in total_score assert "total_grade" in total_score assert 0 <= total_score["total_score"] <= 100 # Should include breakdown assert "breakdown" in total_score assert all(cat in total_score["breakdown"] for cat in ["environmental", "social", "governance"]) @pytest.mark.asyncio async def test_analyze_esg_trends(self, esg_analyzer): """Test ESG trend analysis over time""" historical_scores = [ {"date": "2021-12-31", "environmental": 75.2, "social": 72.1, "governance": 80.5, "total": 75.9}, {"date": "2022-12-31", "environmental": 78.8, "social": 75.5, "governance": 82.3, "total": 78.9}, {"date": "2023-12-31", "environmental": 82.5, "social": 78.3, "governance": 85.7, "total": 82.2} ] trends = await esg_analyzer.analyze_esg_trends( historical_scores=historical_scores, period="3Y" ) assert trends is not None assert isinstance(trends, dict) # Should contain trend analysis assert "overall_trend" in trends assert "category_trends" in trends assert "improvement_areas" in trends assert "year_over_year_change" in trends # Should identify positive trends assert trends["overall_trend"] == "improving" assert all(trends["category_trends"][cat]["direction"] == "up" for cat in ["environmental", "social", "governance"]) @pytest.mark.asyncio async def test_compare_esg_with_peers(self, esg_analyzer): """Test ESG peer comparison""" company_score = { "environmental": 82.5, "social": 78.3, "governance": 85.7, "total": 82.2 } peer_comparison = await esg_analyzer.compare_with_peers( company_code="005930", company_score=company_score, industry_code="26211" ) assert peer_comparison is not None assert isinstance(peer_comparison, dict) # Should contain comparison data assert "company_score" in peer_comparison assert "industry_average" in peer_comparison assert "percentile_rank" in peer_comparison assert "peer_count" in peer_comparison # Should provide relative positioning assert "relative_performance" in peer_comparison for category in ["environmental", "social", "governance"]: assert category in peer_comparison["relative_performance"] @pytest.mark.asyncio async def test_identify_esg_risks(self, esg_analyzer, sample_company_data): """Test ESG risk identification""" esg_scores = { "environmental": {"score": 82.5, "carbon_intensity": 48.3}, "social": {"score": 78.3, "safety_incidents": 12}, "governance": {"score": 85.7, "ethics_violations": 2} } risks = await esg_analyzer.identify_esg_risks( company_data=sample_company_data, esg_scores=esg_scores ) assert risks is not None assert isinstance(risks, list) # Should identify relevant risks for risk in risks: assert "type" in risk assert "description" in risk assert "severity" in risk assert "impact" in risk assert "mitigation_suggestions" in risk assert risk["severity"] in ["low", "medium", "high", "critical"] @pytest.mark.asyncio async def test_generate_esg_initiatives(self, esg_analyzer, sample_company_data): """Test ESG initiative recommendations""" esg_analysis = { "scores": { "environmental": 82.5, "social": 78.3, "governance": 85.7 }, "weak_areas": ["gender_diversity", "carbon_emissions"], "industry_gaps": ["renewable_energy", "supply_chain_transparency"] } initiatives = await esg_analyzer.generate_esg_initiatives( company_data=sample_company_data, esg_analysis=esg_analysis ) assert initiatives is not None assert isinstance(initiatives, list) assert len(initiatives) > 0 # Should generate relevant initiatives for initiative in initiatives: assert "category" in initiative assert "title" in initiative assert "description" in initiative assert "expected_impact" in initiative assert "implementation_timeline" in initiative assert "cost_estimate" in initiative @pytest.mark.asyncio async def test_generate_esg_report(self, esg_analyzer, sample_company_data): """Test comprehensive ESG report generation""" report = await esg_analyzer.generate_esg_report( company_data=sample_company_data, include_scores=True, include_trends=True, include_peer_comparison=True, include_risks=True, include_initiatives=True ) assert report is not None assert isinstance(report, dict) # Should contain all major sections assert "executive_summary" in report assert "scores" in report assert "trends" in report assert "peer_comparison" in report assert "risks" in report assert "initiatives" in report assert "recommendations" in report @pytest.mark.asyncio async def test_esg_data_validation(self, esg_analyzer): """Test ESG data validation""" # Test with invalid data invalid_data = { "carbon_emissions": -1000, # Negative emissions "employee_satisfaction": 6, # Out of range (should be 0-5) "board_independence_ratio": 1.5 # Over 100% } with pytest.raises(MCPStockDetailsError): await esg_analyzer.validate_esg_data(invalid_data) # Test with valid data valid_data = { "carbon_emissions": 12500000, "employee_satisfaction": 4.2, "board_independence_ratio": 0.67 } # Should not raise exception validated = await esg_analyzer.validate_esg_data(valid_data) assert validated is True

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/whdghk1907/mcp-stock-details'

If you have feedback or need assistance with the MCP directory API, please join our Discord server