We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/topoteretes/cognee'
If you have feedback or need assistance with the MCP directory API, please join our Discord server
cognee_simple_document_demo.py•1.08 kB
import asyncio
import cognee
import os
from pprint import pprint
# By default cognee uses OpenAI's gpt-5-mini LLM model
# Provide your OpenAI LLM API KEY
os.environ["LLM_API_KEY"] = ""
async def cognee_demo():
# Get file path to document to process
from pathlib import Path
current_directory = Path(__file__).resolve().parent.parent
file_path = os.path.join(current_directory, "data", "alice_in_wonderland.txt")
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
# Call Cognee to process document
await cognee.add(file_path)
await cognee.cognify()
# Query Cognee for information from provided document
answer = await cognee.search("List me all the important characters in Alice in Wonderland.")
pprint(answer)
answer = await cognee.search("How did Alice end up in Wonderland?")
pprint(answer)
answer = await cognee.search("Tell me about Alice's personality.")
pprint(answer)
# Cognee is an async library, it has to be called in an async context
asyncio.run(cognee_demo())