Skip to main content
Glama

cognee-mcp

start_ui_example.py1.75 kB
#!/usr/bin/env python3 """ Example showing how to use cognee.start_ui() to launch the frontend. This demonstrates the new UI functionality that works similar to DuckDB's start_ui(). """ import asyncio import cognee import time async def main(): # First, let's add some data to cognee for the UI to display print("Adding sample data to cognee...") await cognee.add( "Natural language processing (NLP) is an interdisciplinary subfield of computer science and information retrieval." ) await cognee.add( "Machine learning (ML) is a subset of artificial intelligence that focuses on algorithms and statistical models." ) # Generate the knowledge graph print("Generating knowledge graph...") await cognee.cognify() print("\n" + "=" * 60) print("Starting cognee UI...") print("=" * 60) # Start the UI server server = cognee.start_ui( host="localhost", port=3000, open_browser=True, # This will automatically open your browser ) if server: print("UI server started successfully!") print("The interface will be available at: http://localhost:3000") print("\nPress Ctrl+C to stop the server when you're done...") try: # Keep the server running while server.poll() is None: # While process is still running time.sleep(1) except KeyboardInterrupt: print("\nStopping UI server...") server.terminate() server.wait() # Wait for process to finish print("UI server stopped.") else: print("Failed to start UI server. Check the logs above for details.") if __name__ == "__main__": asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/topoteretes/cognee'

If you have feedback or need assistance with the MCP directory API, please join our Discord server