Skip to main content
Glama

cognee-mcp

README.md2.95 kB
# QA Evaluation Repeated runs of QA evaluation on 24-item HotpotQA subset, comparing Mem0, Graphiti, LightRAG, and Cognee (multiple retriever configs). Uses Modal for distributed benchmark execution. ## Dataset - `hotpot_qa_24_corpus.json` and `hotpot_qa_24_qa_pairs.json` - `hotpot_qa_24_instance_filter.json` for instance filtering ## Systems Evaluated - **Mem0**: OpenAI-based memory QA system - **Graphiti**: LangChain + Neo4j knowledge graph QA - **LightRAG**: Falkor's GraphRAG-SDK - **Cognee**: Multiple retriever configurations (GRAPH_COMPLETION, GRAPH_COMPLETION_COT, GRAPH_COMPLETION_CONTEXT_EXTENSION) ## Project Structure - `src/` - Analysis scripts and QA implementations - `src/modal_apps/` - Modal deployment configurations - `src/qa/` - QA benchmark classes - `src/helpers/` and `src/analysis/` - Utilities **Notes:** - Use `PyProject.toml` for dependencies - Ensure Modal CLI is configured - Modular QA benchmark classes enable parallel execution on other platforms beyond Modal ## Running Benchmarks (Modal) Execute repeated runs via Modal apps: - `modal run modal_apps/modal_qa_benchmark_<system>.py` Where `<system>` is one of: `mem0`, `graphiti`, `lightrag`, `cognee` Raw results stored in Modal volumes under `/qa-benchmarks/<benchmark>/{answers,evaluated}` ## Results Analysis - `python run_cross_benchmark_analysis.py` - Downloads Modal volumes, processes evaluated JSONs - Generates per-benchmark CSVs and cross-benchmark summary - Use `visualize_benchmarks.py` to create comparison charts ## Results - **45 evaluation cycles** on 24 HotPotQA questions with multiple metrics (EM, F1, DeepEval Correctness, Human-like Correctness) - **Significant variance** observed in metrics across small runs due to LLM-as-judge inconsistencies - **Cognee showed consistent improvements** across all measured dimensions compared to Mem0, Lightrag, and Graphiti ### Visualization Results The following charts visualize the benchmark results and performance comparisons: #### Comprehensive Metrics Comparison ![Comprehensive Metrics Comparison](comprehensive_metrics_comparison.png) A comprehensive comparison of all evaluated systems across multiple metrics, showing Cognee's performance relative to Mem0, Graphiti, and LightRAG. #### Optimized Cognee Configurations ![Optimized Cognee Configurations](optimized_cognee_configurations.png) Performance analysis of different Cognee retriever configurations (GRAPH_COMPLETION, GRAPH_COMPLETION_COT, GRAPH_COMPLETION_CONTEXT_EXTENSION), showing optimization results. ## Notes - **Traditional QA metrics (EM/F1)** miss core value of AI memory systems - measure letter/word differences rather than information content - **HotPotQA benchmark mismatch** - designed for multi-hop reasoning but operates in constrained contexts vs. real-world cross-context linking - **DeepEval variance** - LLM-as-judge evaluation carries inconsistencies of underlying language model

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/topoteretes/cognee'

If you have feedback or need assistance with the MCP directory API, please join our Discord server