Skip to main content
Glama

cognee-mcp

graph_db_tests.yml4.02 kB
name: Reusable Graph DB Tests permissions: contents: read on: workflow_call: inputs: databases: required: false type: string default: "all" description: "Which vector databases to test (comma-separated list or 'all')" jobs: run-kuzu-tests: name: Kuzu Tests runs-on: ubuntu-22.04 if: ${{ inputs.databases == 'all' || contains(inputs.databases, 'kuzu') }} steps: - name: Check out uses: actions/checkout@v4 with: fetch-depth: 0 - name: Cognee Setup uses: ./.github/actions/cognee_setup with: python-version: ${{ inputs.python-version }} - name: Dependencies already installed run: echo "Dependencies already installed in setup" - name: Run Kuzu Tests env: ENV: 'dev' LLM_MODEL: ${{ secrets.LLM_MODEL }} LLM_ENDPOINT: ${{ secrets.LLM_ENDPOINT }} LLM_API_KEY: ${{ secrets.LLM_API_KEY }} LLM_API_VERSION: ${{ secrets.LLM_API_VERSION }} EMBEDDING_MODEL: ${{ secrets.EMBEDDING_MODEL }} EMBEDDING_ENDPOINT: ${{ secrets.EMBEDDING_ENDPOINT }} EMBEDDING_API_KEY: ${{ secrets.EMBEDDING_API_KEY }} EMBEDDING_API_VERSION: ${{ secrets.EMBEDDING_API_VERSION }} run: uv run python ./cognee/tests/test_kuzu.py - name: Run Weighted Edges Tests with Kuzu env: ENV: 'dev' GRAPH_DATABASE_PROVIDER: "kuzu" LLM_MODEL: ${{ secrets.LLM_MODEL }} LLM_ENDPOINT: ${{ secrets.LLM_ENDPOINT }} LLM_API_KEY: ${{ secrets.LLM_API_KEY }} LLM_API_VERSION: ${{ secrets.LLM_API_VERSION }} EMBEDDING_MODEL: ${{ secrets.EMBEDDING_MODEL }} EMBEDDING_ENDPOINT: ${{ secrets.EMBEDDING_ENDPOINT }} EMBEDDING_API_KEY: ${{ secrets.EMBEDDING_API_KEY }} EMBEDDING_API_VERSION: ${{ secrets.EMBEDDING_API_VERSION }} run: uv run pytest cognee/tests/unit/interfaces/graph/test_weighted_edges.py -v run-neo4j-tests: name: Neo4j Tests runs-on: ubuntu-22.04 if: ${{ inputs.databases == 'all' || contains(inputs.databases, 'neo4j') }} steps: - name: Check out uses: actions/checkout@master - name: Cognee Setup uses: ./.github/actions/cognee_setup with: python-version: ${{ inputs.python-version }} - name: Run default Neo4j env: ENV: 'dev' LLM_MODEL: ${{ secrets.LLM_MODEL }} LLM_ENDPOINT: ${{ secrets.LLM_ENDPOINT }} LLM_API_KEY: ${{ secrets.LLM_API_KEY }} LLM_API_VERSION: ${{ secrets.LLM_API_VERSION }} EMBEDDING_MODEL: ${{ secrets.EMBEDDING_MODEL }} EMBEDDING_ENDPOINT: ${{ secrets.EMBEDDING_ENDPOINT }} EMBEDDING_API_KEY: ${{ secrets.EMBEDDING_API_KEY }} EMBEDDING_API_VERSION: ${{ secrets.EMBEDDING_API_VERSION }} GRAPH_DATABASE_PROVIDER: "neo4j" GRAPH_DATABASE_URL: ${{ secrets.NEO4J_API_URL }} GRAPH_DATABASE_PASSWORD: ${{ secrets.NEO4J_API_KEY }} GRAPH_DATABASE_USERNAME: "neo4j" run: uv run python ./cognee/tests/test_neo4j.py - name: Run Weighted Edges Tests with Neo4j env: ENV: 'dev' GRAPH_DATABASE_PROVIDER: "neo4j" GRAPH_DATABASE_URL: ${{ secrets.NEO4J_API_URL }} GRAPH_DATABASE_PASSWORD: ${{ secrets.NEO4J_API_KEY }} GRAPH_DATABASE_USERNAME: "neo4j" LLM_MODEL: ${{ secrets.LLM_MODEL }} LLM_ENDPOINT: ${{ secrets.LLM_ENDPOINT }} LLM_API_KEY: ${{ secrets.LLM_API_KEY }} LLM_API_VERSION: ${{ secrets.LLM_API_VERSION }} EMBEDDING_MODEL: ${{ secrets.EMBEDDING_MODEL }} EMBEDDING_ENDPOINT: ${{ secrets.EMBEDDING_ENDPOINT }} EMBEDDING_API_KEY: ${{ secrets.EMBEDDING_API_KEY }} EMBEDDING_API_VERSION: ${{ secrets.EMBEDDING_API_VERSION }} run: uv run pytest cognee/tests/unit/interfaces/graph/test_weighted_edges.py -v

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/topoteretes/cognee'

If you have feedback or need assistance with the MCP directory API, please join our Discord server