Skip to main content
Glama
by thadius83

OpenAI MCP Server

Query OpenAI models directly from Claude using MCP protocol. This fork adds support for o3-mini and gpt-4o-mini models with improved message handling.

Cline Auto Install

Set up the MCP server from https://github.com/thadius83/mcp-server-openai. Use "github.com/thadius83/mcp-server-openai" as the server name in cline_mcp_settings.json. Analyse the readme and instructions below. Do not create new files in the repo, utilise the findings from pyproject.toml, src/mcp_server_openai/server.py, src/mcp_server_openai/llm.py Once installed, demonstrate the server's capabilities by using one of its tools. Installation Steps: # Clone the repository git clone https://github.com/thadius83/mcp-server-openai cd mcp-server-openai # Install the package pip install .` MCP Settings Configuration: The cline_mcp_settings.json should be configured with: Correct server name format: "github.com/thadius83/mcp-server-openai" Python module path structure for the server PYTHONPATH environment variable pointing to the project directory OpenAI API key passed as a command line argument Example configuration: { "mcpServers": { "github.com/thadius83/mcp-server-openai": { "command": "python", "args": [ "-m", "src.mcp_server_openai.server", "--openai-api-key", "your-openai-api-key" ], "env": { "PYTHONPATH": "/path/to/mcp-server-openai" }, "disabled": false, "autoApprove": [] } } } Requirements: Python >= 3.10 OpenAI API key Dependencies installed via pip (mcp>=0.9.1, openai>=1.0.0, click>=8.0.0, pytest-asyncio) Available Tools: Tool Name: ask-openai Description: Ask OpenAI assistant models a direct question Models Available: o3-mini (default) gpt-4o-mini Input Schema: { "query": "Your question here", "model": "o3-mini" // optional, defaults to o3-mini }

Related MCP server: MCP OpenAI Server

Features

  • Direct integration with OpenAI's API

  • Support for multiple models:

    • o3-mini (default): Optimized for concise responses

    • gpt-4o-mini: Enhanced model for more detailed responses

  • Configurable message formatting

  • Error handling and logging

  • Simple interface through MCP protocol

Installation

Installing via Smithery

To install OpenAI MCP Server for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @thadius83/mcp-server-openai --client claude

Manual Installation

  1. Clone the Repository:

git clone https://github.com/thadius83/mcp-server-openai.git cd mcp-server-openai # Install dependencies pip install -e .
  1. Configure Claude Desktop:

Add this server to your existing MCP settings configuration. Note: Keep any existing MCP servers in the configuration - just add this one alongside them.

Location:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json

  • Windows: %APPDATA%/Claude/claude_desktop_config.json

  • Linux: Check your home directory (~/) for the default MCP settings location

{ "mcpServers": { // ... keep your existing MCP servers here ... "github.com/thadius83/mcp-server-openai": { "command": "python", "args": ["-m", "src.mcp_server_openai.server", "--openai-api-key", "your-key-here"], "env": { "PYTHONPATH": "/path/to/your/mcp-server-openai" } } } }
  1. Get an OpenAI API Key:

    • Visit OpenAI's website

    • Create an account or log in

    • Navigate to API settings

    • Generate a new API key

    • Add the key to your configuration file as shown above

  2. Restart Claude:

    • After updating the configuration, restart Claude for the changes to take effect

Usage

The server provides a single tool ask-openai that can be used to query OpenAI models. You can use it directly in Claude with the use_mcp_tool command:

<use_mcp_tool> <server_name>github.com/thadius83/mcp-server-openai</server_name> <tool_name>ask-openai</tool_name> <arguments> { "query": "What are the key features of Python's asyncio library?", "model": "o3-mini" // Optional, defaults to o3-mini } </arguments> </use_mcp_tool>

Model Comparison

  1. o3-mini (default)

    • Best for: Quick, concise answers

    • Style: Direct and efficient

    • Example response:

      Python's asyncio provides non-blocking, collaborative multitasking. Key features: 1. Event Loop – Schedules and runs asynchronous tasks 2. Coroutines – Functions you can pause and resume 3. Tasks – Run coroutines concurrently 4. Futures – Represent future results 5. Non-blocking I/O – Efficient handling of I/O operations
  2. gpt-4o-mini

    • Best for: More comprehensive explanations

    • Style: Detailed and thorough

    • Example response:

      Python's asyncio library provides a comprehensive framework for asynchronous programming. It includes an event loop for managing tasks, coroutines for writing non-blocking code, tasks for concurrent execution, futures for handling future results, and efficient I/O operations. The library also provides synchronization primitives and high-level APIs for network programming.

Response Format

The tool returns responses in a standardized format:

{ "content": [ { "type": "text", "text": "Response from the model..." } ] }

Troubleshooting

  1. Server Not Found:

    • Verify the PYTHONPATH in your configuration points to the correct directory

    • Ensure Python and pip are properly installed

    • Try running python -m src.mcp_server_openai.server --openai-api-key your-key-here directly to check for errors

  2. Authentication Errors:

    • Check that your OpenAI API key is valid

    • Ensure the key is correctly passed in the args array

    • Verify there are no extra spaces or characters in the key

  3. Model Errors:

    • Confirm you're using supported models (o3-mini or gpt-4o-mini)

    • Check your query isn't empty

    • Ensure you're not exceeding token limits

Development

# Install development dependencies pip install -e ".[dev]" # Run tests pytest -v test_openai.py -s

Changes from Original

  • Added support for o3-mini and gpt-4o-mini models

  • Improved message formatting

  • Removed temperature parameter for better compatibility

  • Updated documentation with detailed usage examples

  • Added model comparison and response examples

  • Enhanced installation instructions

  • Added troubleshooting guide

License

MIT License

Deploy Server
A
security – no known vulnerabilities
A
license - permissive license
A
quality - confirmed to work

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/thadius83/mcp-server-openai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server