Skip to main content
Glama
syucream

Lightdash MCP Server

by syucream

lightdash-mcp-server

npm version

A MCP(Model Context Protocol) server that accesses to Lightdash.

This server provides MCP-compatible access to Lightdash's API, allowing AI assistants to interact with your Lightdash data through a standardized interface.

Features

Available tools:

  • list_projects - List all projects in the Lightdash organization

  • get_project - Get details of a specific project

  • list_spaces - List all spaces in a project

  • list_charts - List all charts in a project

  • list_dashboards - List all dashboards in a project

  • get_custom_metrics - Get custom metrics for a project

  • get_catalog - Get catalog for a project

  • get_metrics_catalog - Get metrics catalog for a project

  • get_charts_as_code - Get charts as code for a project

  • get_dashboards_as_code - Get dashboards as code for a project

Related MCP server: Astro Docs MCP Server

Quick Start

Installation

Installing via Smithery

To install Lightdash MCP Server for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install lightdash-mcp-server --client claude

Manual Installation

npm install lightdash-mcp-server

Configuration

  • LIGHTDASH_API_KEY: Your Lightdash PAT

  • LIGHTDASH_API_URL: The API base URL

Usage

The lightdash-mcp-server supports two transport modes: Stdio (default) and HTTP.

Stdio Transport (Default)

  1. Start the MCP server:

npx lightdash-mcp-server
  1. Edit your MCP configuration json:

... "lightdash": { "command": "npx", "args": [ "-y", "lightdash-mcp-server" ], "env": { "LIGHTDASH_API_KEY": "<your PAT>", "LIGHTDASH_API_URL": "https://<your base url>" } }, ...

HTTP Transport (Streamable HTTP)

  1. Start the MCP server in HTTP mode:

npx lightdash-mcp-server -port 8080

This starts the server using StreamableHTTPServerTransport, making it accessible via HTTP at http://localhost:8080/mcp.

  1. Configure your MCP client to connect via HTTP:

For Claude Desktop and other MCP clients:

Edit your MCP configuration json to use the url field instead of command and args:

... "lightdash": { "url": "http://localhost:8080/mcp" }, ...

For programmatic access:

Use the streamable HTTP client transport:

import { Client } from '@modelcontextprotocol/sdk/client/index.js'; import { StreamableHTTPClientTransport } from '@modelcontextprotocol/sdk/client/streamableHttp.js'; const client = new Client({ name: 'my-client', version: '1.0.0' }, { capabilities: {} }); const transport = new StreamableHTTPClientTransport( new URL('http://localhost:8080/mcp') ); await client.connect(transport);

Note: When using HTTP mode, ensure the environment variables LIGHTDASH_API_KEY and LIGHTDASH_API_URL are set in the environment where the server is running, as they cannot be passed through MCP client configuration.

See examples/list_spaces_http.ts for a complete example of connecting to the HTTP server programmatically.

Development

Available Scripts

  • npm run dev - Start the server in development mode with hot reloading (stdio transport)

  • npm run dev:http - Start the server in development mode with HTTP transport on port 8080

  • npm run build - Build the project for production

  • npm run start - Start the production server

  • npm run lint - Run linting checks (ESLint and Prettier)

  • npm run fix - Automatically fix linting issues

  • npm run examples - Run the example scripts

Contributing

  1. Fork the repository

  2. Create your feature branch

  3. Run tests and linting: npm run lint

  4. Commit your changes

  5. Push to the branch

  6. Create a Pull Request

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/syucream/lightdash-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server