Skip to main content
Glama

shivonai-mcp

by shivonai
test_crewai.py2.17 kB
# tested on openai models and bedrock claude models # work with both types of models models. # openai use from crewai import Agent, Task, Crew from langchain_openai import ChatOpenAI # or any other LLM you prefer from shivonai.lyra import crew_toolkit import os os.environ["OPENAI_API_KEY"] = "oepnai_api_key" llm = ChatOpenAI(temperature=0.7, model="gpt-4") # Get CrewAI tools tools = crew_toolkit("shivonai_auth_token") # Print available tools print(f"Available tools: {[tool.name for tool in tools]}") # Create an agent with these tools agent = Agent( role="Data Analyst", goal="Analyze data using custom tools", backstory="You're an expert data analyst with access to custom tools", tools=tools, llm=llm # Provide the LLM here ) # Create a task - note the expected_output field task = Task( description="what listings I have?", expected_output="A detailed report with key insights and recommendations", agent=agent ) crew = Crew( agents=[agent], tasks=[task] ) result = crew.kickoff() print(result) # #bedrock claude model use # from crewai import Agent, Task, Crew, LLM # from shivonai.lyra import crew_toolkit # import os # import boto3 # # Set up AWS credentials # os.environ["AWS_ACCESS_KEY_ID"] = "bedrock_access_key" # os.environ["AWS_SECRET_ACCESS_KEY"] = "bedrock_secrate_access_key" # os.environ["AWS_REGION "] = "bedrock_region" # # Create the CrewAI LLM instance with the bedrock prefix # bedrock_llm = LLM(model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0") # # Get CrewAI tools # tools = crew_toolkit("shivonai_auth_token") # # Create an agent with these tools # agent = Agent( # role="Data Analyst", # goal="Analyze data using custom tools", # backstory="You're an expert data analyst with access to custom tools", # tools=tools, # llm=bedrock_llm # Using the Bedrock LLM # ) # # Create a task # task = Task( # description="what listings I have?", # expected_output="A detailed report with key insights and recommendations", # agent=agent # ) # crew = Crew( # agents=[agent], # tasks=[task] # ) # result = crew.kickoff() # print(result)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/shivonai/python_package'

If you have feedback or need assistance with the MCP directory API, please join our Discord server