Skip to main content
Glama

shivonai-mcp

by shivonai

시본AI

다양한 AI 에이전트 프레임워크와 AI 채용 도구를 통합하기 위한 Python 패키지입니다.

특징

  • AI 에이전트를 위한 맞춤형 채용 도구에 액세스하세요
  • 인기 있는 AI 에이전트 프레임워크와 MCP 도구 통합:
    • 랭체인
    • 라마인덱스
    • 크루AI
    • 아그노

auth_token 생성

https://shivonai.com을 방문하여 auth_token을 생성하세요.

설치

지엑스피1

시작하기

LangChain 통합

from langchain_openai import ChatOpenAI from langchain.agents import initialize_agent, AgentType from shivonai.lyra import langchain_toolkit # Replace with your actual MCP server details auth_token = "shivonai_auth_token" # Get LangChain tools tools = langchain_toolkit(auth_token) # Print available tools print(f"Available tools: {[tool.name for tool in tools]}") # Initialize LangChain agent with tools llm = ChatOpenAI( temperature=0, model_name="gpt-4-turbo", openai_api_key="openai-api-key" ) agent = initialize_agent( tools=tools, llm=llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) # Try running the agent with a simple task try: result = agent.run("what listing I have?") print(f"Result: {result}") except Exception as e: print(f"Error: {e}")

LlamaIndex 통합

from llama_index.llms.openai import OpenAI from llama_index.core.agent import ReActAgent from shivonai.lyra import llamaindex_toolkit # Set up OpenAI API key - you'll need this to use OpenAI models with LlamaIndex os.environ["OPENAI_API_KEY"] = "openai_api_key" # Your MCP server authentication details MCP_AUTH_TOKEN = "shivonai_auth_token" def main(): """Test LlamaIndex integration with ShivonAI.""" print("Testing LlamaIndex integration with ShivonAI...") # Get LlamaIndex tools from your MCP server tools = llamaindex_toolkit(MCP_AUTH_TOKEN) print(f"Found {len(tools)} MCP tools for LlamaIndex:") for name, tool in tools.items(): print(f" - {name}: {tool.metadata.description[:60]}...") # Create a LlamaIndex agent with these tools llm = OpenAI(model="gpt-4") # Convert tools dictionary to a list tool_list = list(tools.values()) # Create the ReAct agent agent = ReActAgent.from_tools( tools=tool_list, llm=llm, verbose=True ) # Test the agent with a simple query that should use one of your tools # Replace this with a query that's relevant to your tools query = "what listings I have?" print("\nTesting agent with query:", query) response = agent.chat(query) print("\nAgent response:") print(response) if __name__ == "__main__": main()

CrewAI 통합

from crewai import Agent, Task, Crew from langchain_openai import ChatOpenAI # or any other LLM you prefer from shivonai.lyra import crew_toolkit import os os.environ["OPENAI_API_KEY"] = "oepnai_api_key" llm = ChatOpenAI(temperature=0.7, model="gpt-4") # Get CrewAI tools tools = crew_toolkit("shivonai_auth_token") # Print available tools print(f"Available tools: {[tool.name for tool in tools]}") # Create an agent with these tools agent = Agent( role="Data Analyst", goal="Analyze data using custom tools", backstory="You're an expert data analyst with access to custom tools", tools=tools, llm=llm # Provide the LLM here ) # Create a task - note the expected_output field task = Task( description="what listings I have?", expected_output="A detailed report with key insights and recommendations", agent=agent ) crew = Crew( agents=[agent], tasks=[task]) result = crew.kickoff() print(result)

Agno 통합

from agno.agent import Agent from agno.models.openai import OpenAIChat from shivonai.lyra import agno_toolkit import os from agno.models.aws import Claude # Replace with your actual MCP server details auth_token = "Shivonai_auth_token" os.environ["OPENAI_API_KEY"] = "oepnai_api_key" # Get Agno tools tools = agno_toolkit(auth_token) # Print available tools print(f"Available MCP tools: {list(tools.keys())}") # Create an Agno agent with tools agent = Agent( model=OpenAIChat(id="gpt-3.5-turbo"), tools=list(tools.values()), markdown=True, show_tool_calls=True ) # Try the agent with a simple task try: agent.print_response("what listing are there?", stream=True) except Exception as e: print(f"Error: {e}")

특허

이 프로젝트는 독점 라이선스에 따라 라이선스가 부여되었습니다. 자세한 내용은 라이선스 파일을 참조하세요.

-
security - not tested
F
license - not found
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

당사의 MCP 도구는 AI 기반 자동 면접 서비스를 향상시키도록 설계되었으며, 매끄럽고 상황에 맞는 후보자 평가 프로세스를 보장합니다. 이 도구는 고급 AI 모델을 활용하여 응답을 분석하고, 역량을 평가하고, 실시간 피드백을 제공합니다.

  1. 특징
    1. auth\_token 생성
      1. 설치
        1. 시작하기
          1. LangChain 통합
          2. LlamaIndex 통합
          3. CrewAI 통합
          4. Agno 통합
        2. 특허

          Related MCP Servers

          • A
            security
            A
            license
            A
            quality
            This server provides a minimal template for creating AI assistant tools using the ModelContextProtocol, featuring a simple 'hello world' tool example and development setups for building custom MCP tools.
            Last updated -
            1
            1
            8
            TypeScript
            The Unlicense
            • Apple
          • -
            security
            F
            license
            -
            quality
            A specialized Model Context Protocol (MCP) server that enables AI-powered interview roleplay scenarios for practice with realistic conversational feedback.
            Last updated -
            6
            3
            TypeScript
          • -
            security
            F
            license
            -
            quality
            Enables AI tools to capture and process screenshots of a user's screen, allowing AI assistants to see and analyze what the user is looking at through a simple MCP interface.
            Last updated -
            1
            Python
            • Linux
            • Apple
          • A
            security
            F
            license
            A
            quality
            An MCP server that supercharges AI assistants with powerful tools for software development, enabling research, planning, code generation, and project scaffolding through natural language interaction.
            Last updated -
            11
            34
            TypeScript
            • Linux
            • Apple

          View all related MCP servers

          MCP directory API

          We provide all the information about MCP servers via our MCP API.

          curl -X GET 'https://glama.ai/api/mcp/v1/servers/shivonai/python_package'

          If you have feedback or need assistance with the MCP directory API, please join our Discord server