shivonai-mcp

Official
by shivonai

Integrations

  • Provides custom hiring tools for CrewAI agents, facilitating recruitment-related tasks and data analysis within CrewAI workflows

  • Enables AI agents to use custom hiring tools through LangChain, allowing integration of recruitment capabilities with LangChain agents

  • Integrates with OpenAI models like GPT-4 to power the AI agent capabilities for recruitment tools and data analysis tasks

ShivonAI

Пакет Python для интеграции инструментов подбора персонала на основе ИИ с различными фреймворками агентов на основе ИИ.

Функции

  • Получите доступ к индивидуальным инструментам найма для агентов с искусственным интеллектом
  • Интегрируйте инструменты MCP с популярными фреймворками агентов ИИ:
    • LangChain
    • LlamaIndex
    • CrewAI
    • Агно

Сгенерировать auth_token

посетите https://shivonai.com, чтобы сгенерировать свой auth_token.

Установка

pip install shivonai[langchain] # For LangChain pip install shivonai[llamaindex] # For LlamaIndex pip install shivonai[crewai] # For CrewAI pip install shivonai[agno] # For Agno pip install shivonai[all] # For all frameworks

Начиная

Интеграция LangChain

from langchain_openai import ChatOpenAI from langchain.agents import initialize_agent, AgentType from shivonai.lyra import langchain_toolkit # Replace with your actual MCP server details auth_token = "shivonai_auth_token" # Get LangChain tools tools = langchain_toolkit(auth_token) # Print available tools print(f"Available tools: {[tool.name for tool in tools]}") # Initialize LangChain agent with tools llm = ChatOpenAI( temperature=0, model_name="gpt-4-turbo", openai_api_key="openai-api-key" ) agent = initialize_agent( tools=tools, llm=llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) # Try running the agent with a simple task try: result = agent.run("what listing I have?") print(f"Result: {result}") except Exception as e: print(f"Error: {e}")

Интеграция LlamaIndex

from llama_index.llms.openai import OpenAI from llama_index.core.agent import ReActAgent from shivonai.lyra import llamaindex_toolkit # Set up OpenAI API key - you'll need this to use OpenAI models with LlamaIndex os.environ["OPENAI_API_KEY"] = "openai_api_key" # Your MCP server authentication details MCP_AUTH_TOKEN = "shivonai_auth_token" def main(): """Test LlamaIndex integration with ShivonAI.""" print("Testing LlamaIndex integration with ShivonAI...") # Get LlamaIndex tools from your MCP server tools = llamaindex_toolkit(MCP_AUTH_TOKEN) print(f"Found {len(tools)} MCP tools for LlamaIndex:") for name, tool in tools.items(): print(f" - {name}: {tool.metadata.description[:60]}...") # Create a LlamaIndex agent with these tools llm = OpenAI(model="gpt-4") # Convert tools dictionary to a list tool_list = list(tools.values()) # Create the ReAct agent agent = ReActAgent.from_tools( tools=tool_list, llm=llm, verbose=True ) # Test the agent with a simple query that should use one of your tools # Replace this with a query that's relevant to your tools query = "what listings I have?" print("\nTesting agent with query:", query) response = agent.chat(query) print("\nAgent response:") print(response) if __name__ == "__main__": main()

Интеграция CrewAI

from crewai import Agent, Task, Crew from langchain_openai import ChatOpenAI # or any other LLM you prefer from shivonai.lyra import crew_toolkit import os os.environ["OPENAI_API_KEY"] = "oepnai_api_key" llm = ChatOpenAI(temperature=0.7, model="gpt-4") # Get CrewAI tools tools = crew_toolkit("shivonai_auth_token") # Print available tools print(f"Available tools: {[tool.name for tool in tools]}") # Create an agent with these tools agent = Agent( role="Data Analyst", goal="Analyze data using custom tools", backstory="You're an expert data analyst with access to custom tools", tools=tools, llm=llm # Provide the LLM here ) # Create a task - note the expected_output field task = Task( description="what listings I have?", expected_output="A detailed report with key insights and recommendations", agent=agent ) crew = Crew( agents=[agent], tasks=[task]) result = crew.kickoff() print(result)

Интеграция Agno

from agno.agent import Agent from agno.models.openai import OpenAIChat from shivonai.lyra import agno_toolkit import os from agno.models.aws import Claude # Replace with your actual MCP server details auth_token = "Shivonai_auth_token" os.environ["OPENAI_API_KEY"] = "oepnai_api_key" # Get Agno tools tools = agno_toolkit(auth_token) # Print available tools print(f"Available MCP tools: {list(tools.keys())}") # Create an Agno agent with tools agent = Agent( model=OpenAIChat(id="gpt-3.5-turbo"), tools=list(tools.values()), markdown=True, show_tool_calls=True ) # Try the agent with a simple task try: agent.print_response("what listing are there?", stream=True) except Exception as e: print(f"Error: {e}")

Лицензия

Данный проект лицензирован по лицензии Proprietary License — подробности см. в файле LICENSE.

-
security - not tested
F
license - not found
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

Наши инструменты MCP предназначены для улучшения автоматизированных услуг интервьюирования на основе ИИ, обеспечивая бесперебойный и контекстно-релевантный процесс оценки кандидатов. Эти инструменты используют передовые модели ИИ для анализа ответов, оценки компетенций и предоставления обратной связи в режиме реального времени, ма

  1. Функции
    1. Сгенерировать auth_token
      1. Установка
        1. Начиная
          1. Интеграция LangChain
          2. Интеграция LlamaIndex
          3. Интеграция CrewAI
          4. Интеграция Agno
        2. Лицензия

          Related MCP Servers

          • A
            security
            A
            license
            A
            quality
            This server provides a minimal template for creating AI assistant tools using the ModelContextProtocol, featuring a simple 'hello world' tool example and development setups for building custom MCP tools.
            Last updated -
            1
            14
            8
            TypeScript
            The Unlicense
            • Apple
          • -
            security
            F
            license
            -
            quality
            A specialized Model Context Protocol (MCP) server that enables AI-powered interview roleplay scenarios for practice with realistic conversational feedback.
            Last updated -
            6
            3
            TypeScript
          • -
            security
            F
            license
            -
            quality
            Enables AI tools to capture and process screenshots of a user's screen, allowing AI assistants to see and analyze what the user is looking at through a simple MCP interface.
            Last updated -
            1
            Python
            • Linux
            • Apple
          • A
            security
            A
            license
            A
            quality
            An MCP server that supercharges AI assistants with powerful tools for software development, enabling research, planning, code generation, and project scaffolding through natural language interaction.
            Last updated -
            11
            6
            TypeScript
            MIT License
            • Linux
            • Apple

          View all related MCP servers

          ID: 8s8deyg040