Skip to main content
Glama

shivonai-mcp

by shivonai
test_agno.py1.15 kB
# tested on openai models and bedrock claude models # do not work with bedrock claude models. from agno.agent import Agent from agno.models.openai import OpenAIChat from shivonai.lyra import agno_toolkit import os from agno.models.aws import Claude # Replace with your actual MCP server details auth_token = "Shivonai_auth_token" # Your MCP server URL os.environ["OPENAI_API_KEY"] = "oepnai_api_key" os.environ["AWS_ACCESS_KEY_ID"] = "bedrock_access_key" os.environ["AWS_SECRET_ACCESS_KEY"] = "bedrock_secrate_access_key" os.environ["AWS_REGION "] = "bedrock_region" # Get Agno tools tools = agno_toolkit(auth_token) print(tools) # Print available tools # print(tools.__name__) print(f"Available MCP tools: {list(tools.keys())}") print(tools.values()) # Create an Agno agent with tools agent = Agent( model=OpenAIChat(id="gpt-3.5-turbo"), # model = Claude(id="anthropic.claude-3-5-sonnet-20240620-v1:0"), tools=list(tools.values()), markdown=True, show_tool_calls=True ) # Try the agent with a simple task try: agent.print_response("what listing are there?", stream=True) except Exception as e: print(f"Error: {e}")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/shivonai/python_package'

If you have feedback or need assistance with the MCP directory API, please join our Discord server