Skip to main content
Glama

MCP Servers

This repository contains two MCP (Model Context Protocol) servers:

  1. File Finder MCP - for searching files

  2. Whisper STT MCP - for converting speech to text

File Finder MCP Server

This is a Model Context Protocol (MCP) server that provides file search functionality. It allows you to search for files that contain a specified text fragment in their names.

Prerequisites

  • Node.js (version 14 or higher)

  • npm (version 6 or higher)

  • Python 3.6 or higher (for HTTP server)

Installation

  1. Clone or download this repository

  2. Go to the project directory

  3. Install dependencies:

    npm install
  4. Assemble the project:

    npm run build

Starting the server

The project provides several options for launching the MCP server:

Option 1: Direct launch of MCP server

You can run the MCP server directly using Node.js:

npm start

or

node build/index.js

This will start the server and it will listen for JSON-RPC requests on stdin/stdout.

Option 2: Launch HTTP server and MCP proxy

This option uses a Python HTTP server and an MCP proxy that forwards requests to the HTTP server:

  1. First, start the HTTP server:

    npm run start:python

    or

    python main.py
  2. Then in another terminal, run MCP proxy:

    npm run start:http

    or

    node build/index-http.js

Option 3: Integration with VS Code (Cline extension)

To integrate the server with VS Code and the Cline extension:

  1. Find the MCP settings file:

    • Windows: %APPDATA%\Code\User\globalStorage\saoudrizwan.claude-dev\settings\cline_mcp_settings.json

    • macOS: ~/Library/Application Support/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json

    • Linux: ~/.config/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json

  2. Add the following configuration to the mcpServers object in the settings file:

"file-finder-mcp": { "command": "node", "args": ["<ПОЛНЫЙ_ПУТЬ_К_ПРОЕКТУ>/build/index.js"], "disabled": false, "autoApprove": [] }

To use HTTP proxy:

"file-finder-mcp-http": { "command": "node", "args": ["<ПОЛНЫЙ_ПУТЬ_К_ПРОЕКТУ>/build/index-http.js"], "disabled": false, "autoApprove": [] }

Replace <ПОЛНЫЙ_ПУТЬ_К_ПРОЕКТУ> with the actual path to your project directory.

  1. Restart VS Code to load the updated settings.

Available tools

MCP server provides one tool:

  • search_files : Searches for files that contain the specified fragment in their names

    • Parameters:

      • fragment (string, required): Text fragment to search for in file names

Example of use

<use_mcp_tool> <server_name>file-finder-mcp</server_name> <tool_name>search_files</tool_name> <arguments> { "fragment": ".py" } </arguments> </use_mcp_tool>

This example finds all files that contain ".py" in their names.

HTTP server (main.py)

In the root directory of the project there is a file main.py , which implements an HTTP server for searching files. This server provides a REST API for searching files that contain a specified fragment in their names.

Starting HTTP server

  1. Go to the root directory of the project

  2. Start the server using Python:

    python main.py
  3. The server will be launched at http://localhost:8080

Using the API

To search for files, send a GET request to /search with the q query parameter:

http://localhost:8080/search?q=.json

This query will return a JSON array with information about all files that contain ".json" in their names. Each element of the array contains the following fields:

  • name : file name

  • path : absolute path to the file

  • size : file size in bytes

  • created : date and time of file creation

Example answer:

[ { "name": "package.json", "path": "/absolute/path/to/package.json", "size": 1234, "created": "Wed Feb 26 17:00:00 2025" } ]

Whisper STT MCP Server

This is a Model Context Protocol (MCP) server that provides speech-to-text functionality using the faster-whisper library. It allows transcribing audio data into text with automatic language detection.

Prerequisites

  • Node.js (version 14 or higher)

  • npm (version 6 or higher)

  • Python 3.6 or higher

  • faster-whisper (install with pip install faster-whisper )

Installation

  1. Clone or download this repository

  2. Go to the project directory

  3. Install dependencies:

    npm install pip install faster-whisper
  4. Assemble the project:

    npm run build

Starting the server

The project provides several options for running the Whisper MCP server:

Option 1: Direct launch of MCP server

You can run the MCP server directly using Node.js:

npm run start:whisper

or

node build/whisper-index.js

This will start the server and it will listen for JSON-RPC requests on stdin/stdout.

Option 2: Launch HTTP server and MCP proxy

This option uses a Python HTTP server and an MCP proxy that forwards requests to the HTTP server:

  1. First, start the HTTP server:

    npm run start:whisper:python

    or

    python whisper_server.py
  2. Then in another terminal, run MCP proxy:

    npm run start:whisper:http

    or

    node build/whisper-index-http.js

Option 3: Integration with VS Code (Cline extension)

To integrate the server with VS Code and the Cline extension:

  1. Find the MCP settings file:

    • Windows: %APPDATA%\Code\User\globalStorage\saoudrizwan.claude-dev\settings\cline_mcp_settings.json

    • macOS: ~/Library/Application Support/Code/User/globalStorage/saoudrizwan.claude-dev/settings\cline_mcp_settings.json

    • Linux: ~/.config/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json

  2. Add the following configuration to the mcpServers object in the settings file:

"whisper-stt-mcp": { "command": "node", "args": ["<ПОЛНЫЙ_ПУТЬ_К_ПРОЕКТУ>/build/whisper-index.js"], "disabled": false, "autoApprove": [] }

To use HTTP proxy:

"whisper-stt-mcp-http": { "command": "node", "args": ["<ПОЛНЫЙ_ПУТЬ_К_ПРОЕКТУ>/build/whisper-index-http.js"], "disabled": false, "autoApprove": [] }

Replace <ПОЛНЫЙ_ПУТЬ_К_ПРОЕКТУ> with the actual path to your project directory.

  1. Restart VS Code to load the updated settings.

Available tools

MCP server provides one tool:

  • transcribe_audio : Transcribes audio data to text using faster-whisper

    • Parameters:

      • audio_base64 (string, required): Audio data in base64 format

      • language (string, optional): Language code (e.g. "en", "ru"). If not specified, the language will be detected automatically.

Example of use

<use_mcp_tool> <server_name>whisper-stt-mcp</server_name> <tool_name>transcribe_audio</tool_name> <arguments> { "audio_base64": "BASE64_ENCODED_AUDIO_DATA", "language": "ru" } </arguments> </use_mcp_tool>

This example converts audio data to text, assuming the audio is in Russian.

HTTP server (whisper_server.py)

In the root directory of the project there is a file whisper_server.py , which implements an HTTP server for converting speech to text. This server provides a REST API for transcribing audio data into text.

Starting HTTP server

  1. Go to the root directory of the project

  2. Start the server using Python:

    python whisper_server.py
  3. The server will be launched at http://localhost:8081

Using the API

To transcribe audio, send a POST request to /transcribe with a JSON body containing:

  • audio : a base64 encoded string containing audio data

  • language (optional): language code (e.g. "en", "ru")

Example request:

{ "audio": "BASE64_ENCODED_AUDIO_DATA", "language": "ru" }

The answer will contain:

  • text : full transcribed text

  • segments : array of segments with timestamps

  • language : a specific language

  • language_probability : probability of detecting a language

Example answer:

{ "text": "Это пример транскрибированного текста.", "segments": [ { "start": 0.0, "end": 2.5, "text": "Это пример" }, { "start": 2.5, "end": 4.0, "text": "транскрибированного текста." } ], "language": "ru", "language_probability": 0.98 }

Troubleshooting

  • If you get the "No connection found for server" error, make sure you restart VS Code after updating your MCP settings.

  • If the server does not respond, check that the path in the MCP settings is correct and points to the compiled JavaScript file.

  • Make sure the server is built correctly by running npm run build before attempting to use it.

  • To use an HTTP proxy, make sure that the appropriate HTTP server is running (on port 8080 for file-finder or 8081 for whisper-stt).

  • If you have problems with faster-whisper, make sure the library is installed correctly and you have the necessary dependencies to work with GPU (if you are using GPU).

Project structure

Below is a list of the main project files and their purposes:

Root directory

  • src/index.ts - TypeScript MCP file search server source code (direct implementation)

  • src/index-http.ts - Source code for TypeScript MCP proxy for HTTP file search server

  • src/whisper-index.ts - Source code for TypeScript MCP speech-to-text server (direct implementation)

  • src/whisper-index-http.ts - Source code for TypeScript MCP proxy for HTTP speech-to-text server

  • build/index.js - Compiled JavaScript code of MCP server for searching files

  • build/index-http.js - Compiled JavaScript code of MCP proxy for searching files

  • build/whisper-index.js - Compiled JavaScript code of MCP server for converting speech to text

  • build/whisper-index-http.js - Compiled JavaScript code of MCP proxy for converting speech to text

  • tsconfig.json - TypeScript configuration

  • package.json - Description of the package and dependencies

  • main.py - Python HTTP server for file retrieval

  • whisper_server.py - Python HTTP server for speech to text conversion

  • README.md - Project documentation (this file)

Deploy Server
A
security – no known vulnerabilities
F
license - not found
A
quality - confirmed to work

Related MCP Servers

  • A
    security
    F
    license
    A
    quality
    Provides integration with Everything Search Engine allowing powerful file search capabilities through the Model Context Protocol with advanced search options like regex, case sensitivity, and sorting.
    Last updated -
    1
    8
  • A
    security
    A
    license
    A
    quality
    Provides programmatic search functionality for Obsidian vaults through a REST API interface, allowing external applications to search through notes and retrieve absolute paths to matching documents.
    Last updated -
    2
    20
    MIT License
    • Apple
  • A
    security
    A
    license
    A
    quality
    Provides tools for analyzing project structures, searching through codebases, managing dependencies, and performing file operations with advanced filtering capabilities.
    Last updated -
    6
    19
    1
    MIT License
  • -
    security
    A
    license
    -
    quality
    Provides AI-enhanced code search capabilities by integrating with Sourcegraph, allowing AI assistants to search across multiple repositories and codebases with advanced query syntax.
    Last updated -
    15
    MIT License

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/sergey-fintech/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server