# Resource Manager MCP Server - Setup Summary
## Project Structure Created
The following scaffolding has been created for the resource-manager-mcp-server:
```
resource-manager-mcp-server/
├── src/
│ ├── resource_manager_mcp_server/
│ │ ├── __init__.py # Kubernetes lifecycle manager (existing)
│ │ └── __main__.py # Entry point (newly created)
│ ├── server.py # MCP server implementation (existing)
│ ├── allocation_manager.py # Resource allocation manager (existing)
│ └── worker_manager.py # Worker management (existing)
├── tests/
│ ├── conftest.py # Pytest fixtures (newly created)
│ └── test_lifecycle.py # Test suite (newly created)
├── config/
│ ├── example-mcp-deployment.yaml # K8s deployment example (existing)
│ └── worker-config.yaml # Worker config (existing)
├── pyproject.toml # Project metadata & dependencies (existing)
├── requirements.txt # Python dependencies (existing)
├── README.md # Documentation (existing)
├── .env.example # Environment template (newly created)
├── .gitignore # Git ignore rules (existing)
└── example_usage.py # Usage examples (existing)
```
## Newly Created Files
### 1. `/src/resource_manager_mcp_server/__main__.py`
Entry point for running the MCP server as a module:
```bash
python -m resource_manager_mcp_server
```
### 2. `/tests/conftest.py`
Pytest configuration with fixtures for:
- Mock Kubernetes client
- Mock MCP server configurations
- Mock worker configurations
- Mock resource requests
- Sample cluster status and metrics
### 3. `/tests/test_lifecycle.py`
Comprehensive test suite covering:
- Server initialization
- Tool registration (all 13 tools)
- MCP server management (list, get, start, stop, scale)
- Worker management (list, provision, drain, destroy)
- Resource management (request, release, capacity)
- Monitoring (health, metrics, cluster status)
- Error handling
### 4. `/.env.example`
Environment variable template with configuration for:
- Kubernetes settings (kubeconfig, namespace, context)
- Resource manager settings (replicas, timeouts, limits)
- Monitoring configuration (metrics, health checks)
- Worker configuration (TTL, resources)
- Resource allocation settings
- Security settings
- API configuration
## Tool Stubs Implemented
The MCP server (in `src/server.py`) implements these tools:
### Resource Allocation (Core)
- `request_resources` - Reserve resources for jobs
- `release_resources` - Release allocated resources
- `get_capacity` - Get cluster capacity
- `get_allocation` - Get allocation details
- `list_allocations` - List allocations with filtering
- `cleanup_expired` - Clean up expired allocations
### Worker Management
- `list_workers` - List Kubernetes workers
- `provision_workers` - Provision burst workers
- `drain_worker` - Gracefully drain a worker
- `destroy_worker` - Destroy burst workers
- `get_worker_details` - Get detailed worker info
## Installation
1. Install dependencies:
```bash
cd /Users/ryandahlberg/Projects/resource-manager-mcp-server
pip install -e .
```
Or with development dependencies:
```bash
pip install -e ".[dev]"
```
2. Configure environment:
```bash
cp .env.example .env
# Edit .env with your settings
```
3. Set up Kubernetes access:
```bash
# Ensure kubeconfig is configured
export KUBECONFIG=/path/to/kubeconfig
```
## Running Tests
```bash
# Run all tests
pytest
# Run with coverage
pytest --cov=resource_manager_mcp_server --cov-report=html
# Run specific test file
pytest tests/test_lifecycle.py -v
```
## Running the Server
### As a module:
```bash
python -m resource_manager_mcp_server
```
### Directly:
```bash
python src/server.py
```
### With Claude Desktop:
Add to `claude_desktop_config.json`:
```json
{
"mcpServers": {
"resource-manager": {
"command": "python",
"args": ["-m", "resource_manager_mcp_server"],
"env": {
"KUBECONFIG": "/path/to/kubeconfig",
"K8S_NAMESPACE": "cortex"
}
}
}
}
```
## Dependencies
Core dependencies (from pyproject.toml):
- `mcp>=1.9.4` - Model Context Protocol
- `httpx>=0.27.0` - HTTP client
- `kubernetes>=30.0.0` - Kubernetes API
- `pydantic>=2.0.0` - Data validation
- `python-dotenv>=1.0.0` - Environment variables
Development dependencies:
- `pytest>=8.0.0` - Testing framework
- `pytest-asyncio>=0.24.0` - Async test support
- `pytest-cov>=4.1.0` - Coverage reporting
- `mypy>=1.8.0` - Type checking
- `ruff>=0.3.0` - Linting and formatting
## Key Features
1. **MCP Server Management**: Start, stop, scale MCP servers on Kubernetes
2. **Worker Management**: Provision and manage Kubernetes workers
3. **Resource Allocation**: Track resource allocations with unique IDs
4. **Automatic Cleanup**: Background task for expired allocations
5. **K8s Integration**: Full Kubernetes API integration
6. **Type Safety**: Pydantic models for data validation
7. **Comprehensive Testing**: Full test suite with fixtures
8. **Environment Configuration**: Flexible .env configuration
## Integration with Cortex
This MCP server integrates with cortex for:
- Managing MCP server deployments
- Provisioning workers for tasks
- Resource allocation tracking
- Cluster capacity management
- Worker lifecycle management
## Next Steps
1. Install dependencies: `pip install -e ".[dev]"`
2. Configure `.env` file
3. Run tests to verify setup: `pytest`
4. Start the server: `python -m resource_manager_mcp_server`
5. Integrate with Claude Desktop or cortex
## Implementation Status
- [x] Project structure
- [x] MCP server framework
- [x] Tool definitions
- [x] Resource allocation manager
- [x] Worker manager
- [x] Test suite
- [x] Documentation
- [ ] Full Kubernetes integration testing
- [ ] Production deployment
- [ ] Monitoring dashboards