Skip to main content
Glama
.env.example2.06 kB
# Kubernetes Configuration # Path to kubeconfig file (optional, uses default if not set) KUBECONFIG=/path/to/kubeconfig # Default namespace for MCP servers and workers K8S_NAMESPACE=cortex # Kubernetes context to use (optional) K8S_CONTEXT=production # Resource Manager Settings # Default number of replicas for new MCP servers DEFAULT_REPLICAS=1 # Default timeout for operations in minutes DEFAULT_TIMEOUT_MINUTES=30 # Maximum workers allowed per worker type MAX_WORKERS_PER_TYPE=10 # Maximum replicas for MCP servers MAX_MCP_REPLICAS=10 # Monitoring Configuration # Interval for collecting metrics (seconds) METRICS_INTERVAL_SECONDS=60 # Interval for health checks (seconds) HEALTH_CHECK_INTERVAL_SECONDS=30 # Enable prometheus metrics export ENABLE_PROMETHEUS=false # Prometheus port PROMETHEUS_PORT=9090 # Logging Configuration # Log level: DEBUG, INFO, WARNING, ERROR, CRITICAL LOG_LEVEL=INFO # Log format: json or text LOG_FORMAT=text # Worker Configuration # Default TTL for burst workers (minutes) WORKER_DEFAULT_TTL=120 # Default CPU request for workers WORKER_DEFAULT_CPU=500m # Default memory request for workers WORKER_DEFAULT_MEMORY=1Gi # Resource Allocation # Enable resource tracking ENABLE_RESOURCE_TRACKING=true # Resource allocation database path (for persistent tracking) RESOURCE_DB_PATH=/var/lib/resource-manager/allocations.db # Auto-cleanup expired allocations AUTO_CLEANUP_EXPIRED=true # Cleanup interval (seconds) CLEANUP_INTERVAL_SECONDS=300 # MCP Server Settings # Label selector for identifying MCP server deployments MCP_LABEL_SELECTOR=app.kubernetes.io/component=mcp-server # Grace period for MCP server shutdown (seconds) MCP_SHUTDOWN_GRACE_PERIOD=30 # Health check endpoint for MCP servers MCP_HEALTH_ENDPOINT=/health # Security # Enable RBAC validation ENABLE_RBAC_VALIDATION=true # Require TLS for external connections REQUIRE_TLS=false # API Configuration # Enable REST API server ENABLE_API_SERVER=false # API server port API_SERVER_PORT=8080 # API server bind address API_SERVER_BIND=0.0.0.0

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ry-ops/cortex-resource-manager'

If you have feedback or need assistance with the MCP directory API, please join our Discord server