================================================================================
RESOURCE ALLOCATION IMPLEMENTATION - COMPLETE
================================================================================
Implementation Date: 2025-12-08
Location: /Users/ryandahlberg/Projects/resource-manager-mcp-server
IMPLEMENTED TOOLS
================================================================================
1. request_resources(job_id, mcp_servers, workers=None, priority="normal")
- Reserve resources for a job
- Start required MCP servers
- Provision workers if requested
- Track allocation with unique ID
- Return allocation_id, status, endpoints, workers_allocated
2. release_resources(allocation_id)
- Release resources after job completion
- Scale down MCP servers (or mark for idle timeout)
- Queue burst workers for destruction
- Update allocation status
3. get_capacity()
- Return current cluster capacity
- Available CPU, memory, workers
- Running MCP servers
- Active allocations
4. get_allocation(allocation_id)
- Get details of a specific allocation
- Status, resources, age, job_id
ADDITIONAL TOOLS
================================================================================
5. list_allocations(state=None, job_id=None)
- List allocations with optional filtering
6. cleanup_expired_allocations()
- Manually trigger cleanup of expired allocations
IMPLEMENTATION DETAILS
================================================================================
Core Module: src/allocation_manager.py (585 lines)
- AllocationManager class
- In-memory allocation tracking (dict/dataclass)
- Allocation states: pending, active, releasing, released, failed
- Priority levels: low, normal, high, critical
- TTL/expiry handling
- Capacity accounting
Data Structures:
- ResourceAllocation: Complete allocation record
- ClusterCapacity: Cluster resource tracking
- WorkerSpec: Worker instance specification
- MCPServerSpec: MCP server specification
- AllocationState enum
- Priority enum
MCP Server Integration: src/server.py
- 6 MCP tools exposed
- Background cleanup task (every 5 minutes)
- Automatic expiry handling
VALIDATION
================================================================================
Validation Results (validate.py):
✓ Created manager
✓ Initial capacity
✓ Requested resources (allocation_id=alloc-8e5073373de8)
✓ Capacity tracking
✓ Get allocation
✓ List allocations
✓ Released resources
✓ Capacity after release
✓ All tests passed!
DOCUMENTATION
================================================================================
1. RESOURCE_ALLOCATION.md
- Comprehensive API reference
- Usage examples
- Best practices
- Integration patterns
- Error handling
- Future enhancements
2. README.md (updated)
- Added resource allocation section
- Usage examples
3. IMPLEMENTATION_SUMMARY.md
- Complete implementation details
- File listing
- Configuration
- Integration points
TESTS
================================================================================
tests/test_allocation_manager.py (28 tests):
✓ Initialization
✓ Resource requests (with/without workers)
✓ Capacity checking and tracking
✓ MCP server reuse
✓ Resource release
✓ Allocation queries
✓ TTL/expiry
✓ Priority levels
✓ Multiple concurrent allocations
✓ Resource accounting accuracy
✓ Error handling
✓ Data structure validation
EXAMPLES
================================================================================
examples/allocation_example.py (5 interactive examples):
1. Basic resource allocation
2. Multiple concurrent allocations
3. Capacity checking
4. Allocation lifecycle
5. TTL expiry and cleanup
Usage:
python examples/allocation_example.py # Run all examples
python examples/allocation_example.py 1 # Run example 1
USAGE
================================================================================
Direct Python API:
from allocation_manager import AllocationManager
manager = AllocationManager()
allocation = manager.request_resources(
job_id="job-001",
mcp_servers=["filesystem", "github"],
workers=4,
priority="high"
)
# Use resources...
manager.release_resources(allocation['allocation_id'])
Via MCP Server:
python src/server.py
# Then call via MCP protocol
CONFIGURATION
================================================================================
Default Cluster Capacity:
- CPU: 16 cores
- Memory: 32GB (32768 MB)
- Workers: 10
Default Worker Resources:
- CPU: 1 core per worker
- Memory: 2GB (2048 MB) per worker
Port Allocation:
- MCP servers: 9000-9099
- Workers: 8000+
INTEGRATION WITH CORTEX
================================================================================
Coordinator Master:
- Requests resources for tasks
- Passes allocation_id to worker masters
Development Master:
- Receives allocations
- Uses MCP endpoints and workers
- Releases on completion
Security Master:
- High-priority allocations
- Short TTL for scans
CI/CD Master:
- Standard allocations
- Handles deployments
FEATURES
================================================================================
✓ In-memory allocation tracking
✓ MCP server reuse across allocations
✓ Worker provisioning with unique IDs
✓ Capacity accounting (CPU, memory, workers)
✓ TTL/expiry handling
✓ Priority levels (4 levels)
✓ Metadata support
✓ Automatic cleanup
✓ Concurrent allocations
✓ Resource accounting accuracy
FILES CREATED
================================================================================
Implementation:
/Users/ryandahlberg/Projects/resource-manager-mcp-server/src/allocation_manager.py
Documentation:
/Users/ryandahlberg/Projects/resource-manager-mcp-server/RESOURCE_ALLOCATION.md
/Users/ryandahlberg/Projects/resource-manager-mcp-server/IMPLEMENTATION_SUMMARY.md
/Users/ryandahlberg/Projects/resource-manager-mcp-server/RESOURCE_ALLOCATION_COMPLETE.txt
Tests:
/Users/ryandahlberg/Projects/resource-manager-mcp-server/tests/test_allocation_manager.py
Examples:
/Users/ryandahlberg/Projects/resource-manager-mcp-server/examples/allocation_example.py
Validation:
/Users/ryandahlberg/Projects/resource-manager-mcp-server/validate.py
NEXT STEPS
================================================================================
The resource allocation tools are complete and ready for integration with cortex.
To use:
1. Start MCP server: python src/server.py
2. Call tools via MCP protocol or directly via AllocationManager
3. See RESOURCE_ALLOCATION.md for complete API reference
4. See examples/allocation_example.py for usage examples
For production deployment:
- Consider persistent storage (SQLite/PostgreSQL)
- Add metrics and monitoring
- Integrate with real Kubernetes worker provisioning
- Implement health checks
================================================================================
IMPLEMENTATION STATUS: COMPLETE ✓
================================================================================