# MCP Lifecycle Management Implementation Summary
## Overview
Successfully implemented comprehensive MCP (Model Context Protocol) server lifecycle management tools for Kubernetes-based deployments. This implementation provides a complete API for managing MCP servers running in Kubernetes clusters.
## Implementation Details
### Core Module: `src/resource_manager_mcp_server/__init__.py` (611 lines)
#### Main Class: MCPLifecycleManager
A robust manager class that handles all lifecycle operations for MCP servers in Kubernetes.
**Key Features:**
- In-cluster and kubeconfig-based authentication
- Namespace isolation
- Comprehensive error handling
- Input validation
- Automatic health checking
- Status monitoring
#### Implemented Functions
##### 1. list_mcp_servers()
**Purpose:** List all registered MCP servers in the cluster
**Features:**
- Label-based filtering (default: `app.kubernetes.io/component=mcp-server`)
- Returns comprehensive server information
- Includes service endpoints
- Real-time status detection
**Returns:**
```python
[
{
"name": "server-name",
"status": "running|stopped|scaling|pending",
"replicas": 3,
"ready_replicas": 3,
"endpoints": ["http://10.0.0.1:8080"]
}
]
```
##### 2. get_mcp_status(name)
**Purpose:** Get detailed status of a specific MCP server
**Features:**
- Comprehensive deployment status
- Replica information (ready, available, updated)
- Service endpoint discovery
- Last activity timestamp
- Kubernetes condition details
**Returns:**
```python
{
"name": "server-name",
"status": "running",
"replicas": 3,
"ready_replicas": 3,
"available_replicas": 3,
"updated_replicas": 3,
"endpoints": ["http://10.0.0.1:8080"],
"last_activity": "2025-12-08T19:00:00Z",
"conditions": [...]
}
```
##### 3. start_mcp(name, wait_ready=True)
**Purpose:** Start an MCP server by scaling from 0 to 1 replica
**Features:**
- Idempotent (safe to call on running servers)
- Optional wait for ready state
- Configurable timeout (default: 300s)
- Real-time readiness polling
**Parameters:**
- `name`: Server name
- `wait_ready`: Block until ready (default: True)
- `timeout`: Maximum wait time in seconds
**Raises:**
- `ValueError`: Server not found
- `TimeoutError`: Server didn't become ready in time
##### 4. stop_mcp(name, force=False)
**Purpose:** Stop an MCP server by scaling to 0 replicas
**Features:**
- Graceful shutdown by default
- Force mode for immediate termination
- Idempotent (safe to call on stopped servers)
- Automatic pod cleanup in force mode
**Parameters:**
- `name`: Server name
- `force`: Immediate termination (default: False)
**Behavior:**
- Normal mode: Respects terminationGracePeriodSeconds
- Force mode: Sets grace period to 0 and deletes pods immediately
##### 5. scale_mcp(name, replicas)
**Purpose:** Scale an MCP server horizontally
**Features:**
- Replica count validation (0-10)
- Optional wait for ready state
- Idempotent (safe to call with current replica count)
- Supports both scale-up and scale-down
**Parameters:**
- `name`: Server name
- `replicas`: Desired replica count (0-10)
- `wait_ready`: Wait for all replicas to be ready (default: False)
- `timeout`: Maximum wait time in seconds
**Validation:**
- Replica count must be integer between 0 and 10
- Server name must be valid Kubernetes name
### Error Handling & Validation
#### Input Validation
- **Server Names:** Validates Kubernetes naming conventions
- Alphanumeric and hyphens only
- No leading/trailing hyphens
- Case-insensitive
- **Replica Counts:** Validates replica constraints
- Integer type checking
- Range validation (0-10)
#### Exception Types
- `ValueError`: Invalid input or resource not found
- `ApiException`: Kubernetes API errors (with proper status code handling)
- `TimeoutError`: Operations exceeding timeout limits
- Generic `Exception`: Wrapped API errors with descriptive messages
### Service Discovery
#### Endpoint Detection
Supports multiple Kubernetes service types:
1. **ClusterIP Services**
- Returns internal cluster endpoints
- Format: `http://<cluster-ip>:<port>`
2. **NodePort Services**
- Returns node port information
- Format: `nodePort://*:<node-port>`
3. **LoadBalancer Services**
- Returns external endpoints
- Handles both IP and hostname ingress
- Format: `http://<external-ip>:<port>`
### Status Detection
#### Deployment States
Intelligent status determination based on replica counts:
- **running**: `ready_replicas == spec_replicas > 0`
- **stopped**: `spec_replicas == 0`
- **scaling**: `replicas != spec_replicas OR ready_replicas != spec_replicas`
- **pending**: Waiting for initial pods to become ready
### Convenience Functions
Module provides top-level convenience functions for direct usage:
```python
from resource_manager_mcp_server import (
list_mcp_servers,
get_mcp_status,
start_mcp,
stop_mcp,
scale_mcp,
get_manager
)
```
Each function internally uses a singleton `MCPLifecycleManager` instance.
## Supporting Files
### 1. requirements.txt
Dependencies:
- `kubernetes>=28.1.0` - Kubernetes Python client
- `typing-extensions>=4.8.0` - Type hints support
### 2. setup.py
- Package configuration
- Development dependencies (pytest, black, flake8, mypy)
- Python 3.8+ compatibility
### 3. config/example-mcp-deployment.yaml
Complete example Kubernetes deployment including:
- Deployment with proper labels
- Service configuration
- Health and readiness probes
- Resource limits
- Graceful termination settings
### 4. example_usage.py
Comprehensive usage examples demonstrating:
- Basic operations (list, status, scale)
- Advanced usage (custom namespace, timeouts)
- Full lifecycle workflows
- Error handling patterns
### 5. tests/test_lifecycle_manager.py
Extensive test suite covering:
- Input validation
- Status detection
- All CRUD operations
- Error conditions
- Service endpoint discovery
- Mock-based testing (no cluster required)
Test coverage:
- 30+ test cases
- Unit tests for all public methods
- Edge case handling
- Mock Kubernetes API responses
### 6. README.md
Complete documentation including:
- Feature overview
- Installation instructions
- API reference for all functions
- Usage examples
- Kubernetes setup requirements
- RBAC permissions
- Error handling guide
- Development instructions
### 7. QUICKSTART.md
Quick start guide covering:
- 5-minute setup
- Basic usage patterns
- Common workflows
- Troubleshooting tips
- Next steps
### 8. Makefile
Convenience commands:
- `make install` - Install dependencies
- `make test` - Run test suite
- `make lint` - Run linting
- `make format` - Format code
- `make clean` - Clean artifacts
### 9. pytest.ini
Test configuration:
- Test discovery patterns
- Markers for unit/integration tests
- Output formatting
## Technical Design Decisions
### 1. Kubernetes Client Library
- Uses official `kubernetes` Python client
- Supports both in-cluster and external kubeconfig
- Automatic authentication handling
### 2. Singleton Pattern
- Singleton manager instance for convenience functions
- Reduces overhead of multiple client initializations
- Allows direct class usage for advanced scenarios
### 3. Status Polling
- Implements custom wait mechanism with 2-second intervals
- Configurable timeouts
- Non-blocking by default (wait_ready=False)
### 4. Replica Limits
- Conservative limit of 10 replicas
- Prevents accidental resource exhaustion
- Configurable through validation method
### 5. Service Discovery
- Multi-type service support
- Graceful handling of missing services
- Returns empty list rather than failing
### 6. Error Handling Philosophy
- Fail fast with clear error messages
- Distinguish between user errors (ValueError) and system errors (ApiException)
- Idempotent operations where possible
## Integration Points
### Kubernetes Requirements
#### Required Labels
MCP server deployments must have:
```yaml
labels:
app.kubernetes.io/component: mcp-server
```
#### Required RBAC Permissions
```yaml
- apiGroups: ["apps"]
resources: ["deployments"]
verbs: ["get", "list", "patch", "update"]
- apiGroups: [""]
resources: ["services", "pods"]
verbs: ["get", "list", "delete"]
```
#### Recommended Deployment Configuration
- Health probes (liveness and readiness)
- Resource limits
- Graceful termination period (30s recommended)
- Proper labels for discovery
## Usage Patterns
### Pattern 1: Simple Server Management
```python
from resource_manager_mcp_server import start_mcp, stop_mcp
start_mcp("my-server") # Start and wait
# Do work...
stop_mcp("my-server") # Graceful shutdown
```
### Pattern 2: Dynamic Scaling
```python
from resource_manager_mcp_server import scale_mcp, get_mcp_status
scale_mcp("my-server", replicas=5) # Scale up
# Handle load...
scale_mcp("my-server", replicas=1) # Scale down
```
### Pattern 3: Status Monitoring
```python
from resource_manager_mcp_server import list_mcp_servers
servers = list_mcp_servers()
for server in servers:
if server['status'] != 'running':
print(f"Alert: {server['name']} is {server['status']}")
```
### Pattern 4: Advanced Manager Usage
```python
from resource_manager_mcp_server import MCPLifecycleManager
manager = MCPLifecycleManager(namespace="production")
manager.start_mcp("critical-server", wait_ready=True, timeout=600)
```
## Testing Strategy
### Unit Tests
- Mock Kubernetes API calls
- Test validation logic
- Test status detection
- Test error handling
- No cluster required
### Integration Tests
- Require real Kubernetes cluster
- Test actual API interactions
- Validate end-to-end workflows
- Marked separately (`@pytest.mark.integration`)
### Test Execution
```bash
# Unit tests only (no cluster needed)
pytest tests/ -m unit
# All tests (requires cluster)
pytest tests/
# With coverage
pytest tests/ --cov=src/resource_manager_mcp_server
```
## Performance Considerations
### API Call Optimization
- Single deployment read for get_mcp_status()
- Batch listing for list_mcp_servers()
- Optional readiness waiting (non-blocking default)
### Polling Strategy
- 2-second intervals for readiness checks
- Configurable timeouts
- Early exit on success
### Resource Usage
- Minimal memory footprint
- No background threads
- Synchronous operations (simple to reason about)
## Future Enhancements
Potential improvements for future versions:
1. **Async Support**: Add async/await versions of all methods
2. **Batch Operations**: Support multiple servers in single call
3. **Metrics Collection**: Prometheus metrics for monitoring
4. **Event Streaming**: Watch Kubernetes events in real-time
5. **Config Management**: ConfigMap/Secret management
6. **Rollout Strategies**: Blue-green, canary deployments
7. **Auto-scaling**: HPA integration
8. **Cost Tracking**: Resource usage and cost monitoring
9. **Multi-cluster**: Support multiple Kubernetes clusters
10. **Webhooks**: Integration with external systems
## Files Created
```
/Users/ryandahlberg/Projects/resource-manager-mcp-server/
├── src/
│ └── resource_manager_mcp_server/
│ └── __init__.py # Main implementation (611 lines)
├── config/
│ └── example-mcp-deployment.yaml # Example K8s deployment
├── tests/
│ ├── test_lifecycle_manager.py # Comprehensive test suite
│ └── pytest.ini # Test configuration
├── requirements.txt # Python dependencies
├── setup.py # Package configuration
├── example_usage.py # Usage examples
├── README.md # Complete documentation
├── QUICKSTART.md # Quick start guide
├── IMPLEMENTATION_SUMMARY.md # This file
└── Makefile # Build commands
```
## Success Criteria Met
- ✅ list_mcp_servers() - Complete with status, replicas, endpoints
- ✅ get_mcp_status() - Detailed status with conditions and activity
- ✅ start_mcp() - Scale 0→1 with optional wait
- ✅ stop_mcp() - Graceful and force shutdown
- ✅ scale_mcp() - Horizontal scaling with validation
- ✅ Kubernetes Python client integration
- ✅ Proper error handling and validation
- ✅ Comprehensive documentation
- ✅ Test coverage
- ✅ Example code and configurations
## Conclusion
This implementation provides a production-ready MCP lifecycle management system with:
- Complete API coverage for all required operations
- Robust error handling and validation
- Comprehensive documentation and examples
- Extensive test coverage
- Integration-ready design
- Clear upgrade path for future enhancements
The implementation is ready for integration into the cortex automation system and can be used immediately for managing MCP servers in Kubernetes environments.