Skip to main content
Glama

RAGFlow MCP

by oraichain
Apache 2.0
11
  • Linux
  • Apple
README.md1.31 kB
# ragflow-mcp Simple RAGFlow MCP. Only useful until the RAGFlow team releases the official MCP server ## Installation We provide two installation methods. Method 2 (using uv) is recommended for faster installation and better dependency management. ### Method 1: Using conda 1. Create a new conda environment: ```bash conda create -n ragflow_mcp python=3.12 conda activate ragflow_mcp ``` 2. Clone the repository: ```bash git clone https://github.com/oraichain/ragflow-mcp.git cd ragflow-mcp ``` 3. Install dependencies: ```bash pip install -r requirements.txt ``` ### Method 2: Using uv (Recommended) 1. Install uv (A fast Python package installer and resolver): ```bash curl -LsSf https://astral.sh/uv/install.sh | sh ``` 2. Clone the repository: ```bash git clone https://github.com/oraichain/ragflow-mcp.git cd ragflow-mcp ``` 3. Create a new virtual environment and activate it: ```bash uv venv --python 3.12 source .venv/bin/activate # On Unix/macOS # Or on Windows: # .venv\Scripts\activate ``` 4. Install dependencies: ```bash uv pip install -r pyproject.toml ``` # Run MCP Server Inspector for debugging 1. Start the MCP server 2. Start the inspector using the following command: ```bash # you can choose a different server SERVER_PORT=9000 npx @modelcontextprotocol/inspector

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/oraichain/ragflow-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server