# ragflow-mcp
Simple RAGFlow MCP. Only useful until the RAGFlow team releases the official MCP server
## Installation
We provide two installation methods. Method 2 (using uv) is recommended for faster installation and better dependency management.
### Method 1: Using conda
1. Create a new conda environment:
```bash
conda create -n ragflow_mcp python=3.12
conda activate ragflow_mcp
```
2. Clone the repository:
```bash
git clone https://github.com/oraichain/ragflow-mcp.git
cd ragflow-mcp
```
3. Install dependencies:
```bash
pip install -r requirements.txt
```
### Method 2: Using uv (Recommended)
1. Install uv (A fast Python package installer and resolver):
```bash
curl -LsSf https://astral.sh/uv/install.sh | sh
```
2. Clone the repository:
```bash
git clone https://github.com/oraichain/ragflow-mcp.git
cd ragflow-mcp
```
3. Create a new virtual environment and activate it:
```bash
uv venv --python 3.12
source .venv/bin/activate # On Unix/macOS
# Or on Windows:
# .venv\Scripts\activate
```
4. Install dependencies:
```bash
uv pip install -r pyproject.toml
```
# Run MCP Server Inspector for debugging
1. Start the MCP server
2. Start the inspector using the following command:
```bash
# you can choose a different server
SERVER_PORT=9000 npx @modelcontextprotocol/inspector
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/oraichain/ragflow-mcp'
If you have feedback or need assistance with the MCP directory API, please join our Discord server