Skip to main content
Glama

ragflow-mcp

Simple RAGFlow MCP. Only useful until the RAGFlow team releases the official MCP server

Installation

We provide two installation methods. Method 2 (using uv) is recommended for faster installation and better dependency management.

Method 1: Using conda

  1. Create a new conda environment:

conda create -n ragflow_mcp python=3.12 conda activate ragflow_mcp
  1. Clone the repository:

git clone https://github.com/oraichain/ragflow-mcp.git cd ragflow-mcp
  1. Install dependencies:

pip install -r requirements.txt

Method 2: Using uv (Recommended)

  1. Install uv (A fast Python package installer and resolver):

curl -LsSf https://astral.sh/uv/install.sh | sh
  1. Clone the repository:

git clone https://github.com/oraichain/ragflow-mcp.git cd ragflow-mcp
  1. Create a new virtual environment and activate it:

uv venv --python 3.12 source .venv/bin/activate # On Unix/macOS # Or on Windows: # .venv\Scripts\activate
  1. Install dependencies:

uv pip install -r pyproject.toml

Run MCP Server Inspector for debugging

  1. Start the MCP server

  2. Start the inspector using the following command:

# you can choose a different server SERVER_PORT=9000 npx @modelcontextprotocol/inspector
-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/oraichain/ragflow-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server