Skip to main content
Glama

create_passage

Store text memories in an agent's archival memory for later retrieval and management within the Letta system.

Instructions

Insert a memory into an agent's archival memory store. Use list_passages to view existing memories, modify_passage to edit, or delete_passage to remove.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
agent_idYesID of the agent to add the passage to
textYesText content to write to archival memory.
include_embeddingsNoWhether to include the full embedding vectors in the response (default: false).

Implementation Reference

  • The handler function that implements the core logic of the 'create_passage' tool, validating inputs, making an API POST request to create passages in the agent's archival memory, processing the response (optionally stripping embeddings), and returning the result.
    export async function handleCreatePassage(server, args) { if (!args?.agent_id) { server.createErrorResponse('Missing required argument: agent_id'); } if (args?.text === undefined || args?.text === null) { server.createErrorResponse('Missing required argument: text'); } try { const headers = server.getApiHeaders(); const agentId = encodeURIComponent(args.agent_id); const payload = { text: args.text }; // Body requires 'text' // Use the specific endpoint from the OpenAPI spec const response = await server.api.post(`/agents/${agentId}/archival-memory`, payload, { headers, }); let createdPassages = response.data; // Assuming response.data is an array of created Passage objects // Optionally remove embeddings from the response const includeEmbeddings = args?.include_embeddings ?? false; if (!includeEmbeddings) { createdPassages = createdPassages.map((passage) => { // eslint-disable-next-line no-unused-vars const { embedding, ...rest } = passage; // Destructure to remove embedding return rest; }); } return { content: [ { type: 'text', text: JSON.stringify({ passages: createdPassages, }), }, ], }; } catch (error) { // Handle potential 404 if agent not found, 422 for validation, or other API errors if (error.response) { if (error.response.status === 404) { server.createErrorResponse(`Agent not found: ${args.agent_id}`); } if (error.response.status === 422) { server.createErrorResponse( `Validation error creating passage for agent ${args.agent_id}: ${JSON.stringify(error.response.data)}`, ); } } server.createErrorResponse(error); } }
  • The tool definition including name, description, and input schema for 'create_passage', specifying required parameters (agent_id, text) and optional include_embeddings.
    export const createPassageDefinition = { name: 'create_passage', description: "Insert a memory into an agent's archival memory store. Use list_passages to view existing memories, modify_passage to edit, or delete_passage to remove.", inputSchema: { type: 'object', properties: { agent_id: { type: 'string', description: 'ID of the agent to add the passage to', }, text: { type: 'string', description: 'Text content to write to archival memory.', }, include_embeddings: { type: 'boolean', description: 'Whether to include the full embedding vectors in the response (default: false).', default: false, }, }, required: ['agent_id', 'text'], }, };
  • Registration of the 'create_passage' tool handler in the main tool dispatch switch statement within registerToolHandlers.
    case 'create_passage': return handleCreatePassage(server, request.params.arguments);
  • Inclusion of createPassageDefinition in the allTools array for tool list registration.
    createPassageDefinition,
  • Import of the handler and definition from the implementation file.
    import { handleCreatePassage, createPassageDefinition } from './passages/create-passage.js';

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/oculairmedia/Letta-MCP-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server