Skip to main content
Glama

Letta MCP Server

by oculairmedia

Letta MCP Server

A server that provides tools for agent management, memory operations, and integration with the Letta system.

Quick Setup

Option 1: Run with Node.js

# Development (with hot reload) npm run dev:sse # SSE transport # Production npm run build # Build TypeScript first npm run start:sse # SSE transport

Option 2: Run with Docker

# Build and run locally docker build -t letta-mcp-server . docker run -d -p 3001:3001 -e PORT=3001 -e NODE_ENV=production --name letta-mcp letta-mcp-server # Or use the public image docker run -d -p 3001:3001 -e PORT=3001 -e NODE_ENV=production --name letta-mcp ghcr.io/oculairmedia/letta-mcp-server:latest

Directory Structure

  • index.js - Main entry point
  • core/ - Core server functionality
  • tools/ - Individual tool implementations
  • transports/ - Server transport implementations (stdio and SSE)

Available Tools

Agent Management

ToolDescriptionRequired ParametersOptional Parameters
create_agentCreate a new Letta agentname, descriptionmodel, embedding
list_agentsList all available agents-filter
prompt_agentSend a message to an agentagent_id, message-
get_agentGet agent details by IDagent_id-
modify_agentUpdate an existing agentagent_id, update_data-
delete_agentDelete an agentagent_id-
clone_agentClone an existing agentsource_agent_id, new_agent_nameoverride_existing_tools, project_id
bulk_delete_agentsDelete multiple agents-agent_ids, agent_name_filter, agent_tag_filter

Memory Management

ToolDescriptionRequired ParametersOptional Parameters
list_memory_blocksList all memory blocks-filter, agent_id, page, pageSize, label
create_memory_blockCreate a new memory blockname, label, valueagent_id, metadata
read_memory_blockRead a memory blockblock_idagent_id
update_memory_blockUpdate a memory blockblock_idvalue, metadata, agent_id
attach_memory_blockAttach memory to an agentblock_id, agent_idlabel

Tool Management

ToolDescriptionRequired ParametersOptional Parameters
list_toolsList all available tools-filter, page, pageSize
list_agent_toolsList tools for a specific agentagent_id-
attach_toolAttach tools to an agentagent_idtool_id, tool_ids, tool_names
upload_toolUpload a new toolname, description, source_codecategory, agent_id
bulk_attach_tool_to_agentsAttach a tool to multiple agentstool_idagent_name_filter, agent_tag_filter

Additional Tools

  • Model Management: list_llm_models, list_embedding_models
  • Archive Management: list_passages, create_passage, modify_passage, delete_passage
  • MCP Server Management: list_mcp_servers, list_mcp_tools_by_server
  • Import/Export: export_agent, import_agent

Docker Operations

# View container logs docker logs -f letta-mcp # Stop the container docker stop letta-mcp # Update to latest version docker pull ghcr.io/oculairmedia/letta-mcp-server:latest docker stop letta-mcp docker rm letta-mcp docker run -d -p 3001:3001 -e PORT=3001 -e NODE_ENV=production --name letta-mcp ghcr.io/oculairmedia/letta-mcp-server:latest

Configuration with MCP Settings

Add the server to your mcp_settings.json:

"letta": { "command": "node", "args": [ "--no-warnings", "--experimental-modules", "path/to/letta-server/index.js" ], "env": { "LETTA_BASE_URL": "https://your-letta-instance.com", "LETTA_PASSWORD": "yourPassword" }, "disabled": false, "alwaysAllow": [ "upload_tool", "attach_tool", "list_agents", "list_memory_blocks" ], "timeout": 300 }

For remote instances, use the URL configuration:

"remote_letta_tools": { "url": "http://your-server:3001/sse", "disabled": false, "alwaysAllow": [ "attach_tool", "list_agents", "list_tools", "get_agent" ], "timeout": 120 }
Install Server
A
security – no known vulnerabilities
A
license - permissive license
A
quality - confirmed to work

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

An MCP server implementation that enables interaction with the Letta API for managing agents, memory blocks, and tools in the Letta system.

  1. Quick Setup
    1. Option 1: Run with Node.js
    2. Option 2: Run with Docker
  2. Directory Structure
    1. Available Tools
      1. Agent Management
      2. Memory Management
      3. Tool Management
      4. Additional Tools
    2. Docker Operations
      1. Configuration with MCP Settings

        Related MCP Servers

        • A
          security
          A
          license
          A
          quality
          An MCP server that connects to Tana's Input API, allowing Large Language Models and other MCP clients to create and manipulate data in Tana workspaces.
          Last updated -
          11
          13
          19
          TypeScript
          MIT License
          • Linux
          • Apple
        • -
          security
          A
          license
          -
          quality
          MCP server enabling AI agents to programmatically connect to and control Apache Superset instances, allowing users to manage dashboards, charts, databases, datasets, and run SQL queries through natural language interactions.
          Last updated -
          20
          Python
          MIT License
        • A
          security
          A
          license
          A
          quality
          A Model Context Protocol server that enables AI assistants to interact with Linear project management systems, allowing users to retrieve, create, and update issues, projects, and teams through natural language.
          Last updated -
          32
          80
          5
          TypeScript
          MIT License
          • Apple
        • -
          security
          -
          license
          -
          quality
          This MCP server provides tools to interact with the Salesforce Agentforce API, allowing authentication, session creation, and message exchange with Salesforce agents.
          Last updated -
          1
          Python

        View all related MCP servers

        MCP directory API

        We provide all the information about MCP servers via our MCP API.

        curl -X GET 'https://glama.ai/api/mcp/v1/servers/oculairmedia/Letta-MCP-server'

        If you have feedback or need assistance with the MCP directory API, please join our Discord server