Skip to main content
Glama
madamak

Apache Airflow MCP Server

by madamak

airflow_list_task_instances

Retrieve task instances for a specific DAG run to monitor execution status, attempt counts, and access per-attempt log URLs. Filter by state or task IDs and paginate results.

Instructions

List task instances for a DAG run (state, try_number, per-attempt log URL).

Parameters

  • instance: Instance key (optional)

  • ui_url: Airflow UI URL to resolve instance/dag/dag_run (optional)

  • dag_id: DAG identifier

  • dag_run_id: DAG run identifier

  • limit: Max results (default 100; accepts int/float/str, coerced to non-negative int, fractional values truncated)

  • offset: Offset for pagination (default 0; accepts int/float/str, coerced to non-negative int, fractional values truncated)

  • state: Optional list of task states (case-insensitive). When provided, only matching states are returned.

  • task_ids: Optional list of task identifiers to include.

Returns

  • Response dict: { "task_instances": [{ "task_id", "state", "try_number", "ui_url" }], "count": int, "total_entries"?: int, "filters"?: { "state": [...], "task_ids": [...] }, "request_id": str }

  • Raises: ToolError with compact JSON payload (code, message, request_id, optional context)

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
instanceNo
ui_urlNo
dag_idNo
dag_run_idNo
limitNo
offsetNo
stateNo
task_idsNo

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/madamak/apache-airflow-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server