Skip to main content
Glama
madamak

Apache Airflow MCP Server

by madamak

airflow_get_task_instance

Retrieve detailed metadata, configuration, and execution history for a specific task instance in Apache Airflow workflows to monitor performance and troubleshoot issues.

Instructions

Return task metadata, config, attempt summary, optional rendered fields, and UI URLs.

Parameters

  • instance | ui_url: Target selection (URL precedence)

  • dag_id, dag_run_id, task_id: Required identifiers (unless resolved from ui_url)

  • include_rendered: When true, include rendered template fields (truncated using max_rendered_bytes)

  • max_rendered_bytes: Byte cap for rendered fields payload (default 100KB; accepts int/float/str, coerced to positive int, fractional values truncated)

Returns

  • Response dict: { "task_instance": {...}, "task_config": {...}, "attempts": {...}, "ui_url": {...}, "request_id": str, "rendered_fields"?: {...} }

Notes

  • attempts.try_number is the authoritative input for airflow_get_task_instance_logs.

  • Rendered fields include bytes_returned and truncated metadata.

  • Sensors increment try_number on every reschedule, so treat it as an attempt index; the derived retries counters are heuristic.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
instanceNo
ui_urlNo
dag_idNo
dag_run_idNo
task_idNo
include_renderedNo
max_rendered_bytesNo

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/madamak/apache-airflow-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server