Skip to main content
Glama

DoWhy MCP v2.0

by lesong36

DoWhy MCP v2.0 - Rigorous Causal Inference Tools

Python 3.9+ DoWhy License: MIT Code style: black

๐ŸŽฏ Project Vision

DoWhy MCP v2.0 is a complete rewrite of the DoWhy MCP server, designed to provide rigorous, theoretically-grounded causal inference tools through the Model Context Protocol (MCP). This version matches the scientific rigor and theoretical depth of the official DoWhy library.

Related MCP server: AgentMode

๐Ÿ”ฌ Theoretical Foundation

Built on the solid theoretical foundations of:

  • Structural Causal Models (SCM) - Pearl's causal hierarchy

  • Graphical Causal Models (GCM) - Modern causal discovery and inference

  • Potential Outcomes Framework - Rubin's causal model

  • Do-Calculus - Formal causal reasoning

๐Ÿš€ Key Features

โœ… What's New in v2.0

  • ๐Ÿงฎ Rigorous Statistical Inference: True Bootstrap confidence intervals, not noise simulation

  • ๐Ÿ” Comprehensive Sensitivity Analysis: Full suite of refutation tests and E-value analysis

  • ๐Ÿ“Š Complete Causal Toolkit: 42 specialized tools covering all DoWhy functionality

  • ๐ŸŽฏ Theoretical Rigor: Every method backed by solid causal inference theory

  • โšก Performance Optimized: Efficient implementation with proper error handling

  • ๐Ÿ“ˆ Advanced Visualization: Causal graphs, attribution plots, and diagnostic charts

๐Ÿ› ๏ธ Complete Tool Categories

  1. Modeling Tools (6 tools)

    • Causal graph construction and validation

    • Structural and Graphical Causal Models

    • Causal mechanism learning

  2. Causal Effect Estimation (10 tools)

    • Backdoor, frontdoor, and IV identification

    • Linear regression, PSM, doubly robust, DML

    • Causal forests and TMLE

  3. Causal Influence Quantification (6 tools)

    • Shapley value attribution

    • Direct and total causal influence

    • Path-specific effects

  4. Root Cause Analysis (5 tools)

    • Anomaly attribution

    • Distribution change attribution

    • Causal chain tracing

  5. Counterfactual Analysis (6 tools)

    • Individual and population counterfactuals

    • Intervention simulation

    • What-if scenario analysis

  6. Sensitivity Analysis (6 tools)

    • Unobserved confounder analysis

    • Comprehensive refutation tests

    • E-value and tipping point analysis

  7. Causal Discovery (3 tools)

    • PC, GES, and FCM algorithms

    • Structure learning from data

๐Ÿ“‹ Installation

# Install from source (development) git clone https://github.com/dowhy-mcp/dowhy-mcp-v2.git cd dowhy-mcp-v2 pip install -e ".[dev]" # Install from PyPI (when released) pip install dowhy-mcp-v2

๐Ÿ”ง Quick Start

from dowhy_mcp_v2 import DoWhyCausalAnalyzer # Initialize analyzer analyzer = DoWhyCausalAnalyzer() # Estimate causal effect with full rigor result = analyzer.estimate_causal_effect( data="data.csv", treatment="intervention", outcome="result", confounders=["age", "gender", "income"], method="doubly_robust", bootstrap_samples=1000, sensitivity_analysis=True ) # Get comprehensive results print(f"Causal Effect: {result.causal_effect:.4f}") print(f"95% CI: [{result.confidence_interval[0]:.4f}, {result.confidence_interval[1]:.4f}]") print(f"P-value: {result.p_value:.4f}") print(f"Robustness Score: {result.robustness_score:.2f}")

๐Ÿ—๏ธ Architecture

DoWhy MCP v2.0 โ”œโ”€โ”€ Core Engine # Causal inference engine โ”‚ โ”œโ”€โ”€ Model Builder # SCM/GCM construction โ”‚ โ”œโ”€โ”€ Inference Engine # Causal reasoning โ”‚ โ””โ”€โ”€ Validation Framework # Result verification โ”œโ”€โ”€ Tool Modules # 42 specialized tools โ”‚ โ”œโ”€โ”€ Modeling # Graph and model tools โ”‚ โ”œโ”€โ”€ Estimation # Effect estimation โ”‚ โ”œโ”€โ”€ Attribution # Influence quantification โ”‚ โ”œโ”€โ”€ Root Cause # Anomaly analysis โ”‚ โ”œโ”€โ”€ Counterfactual # What-if analysis โ”‚ โ”œโ”€โ”€ Sensitivity # Robustness testing โ”‚ โ””โ”€โ”€ Discovery # Structure learning โ””โ”€โ”€ MCP Interface # Protocol integration

๐Ÿ“Š Comparison with v1.0

Feature

v1.0

v2.0

Theoretical Rigor

Basic

โœ… Complete

Bootstrap CI

โŒ Fake noise

โœ… True Bootstrap

Sensitivity Analysis

โŒ Simplified

โœ… Comprehensive

Causal Graphs

โŒ Limited

โœ… Full Support

Tool Count

4 basic

42 rigorous

Statistical Tests

โŒ Missing

โœ… Complete Suite

Error Handling

โŒ Basic

โœ… Robust

Documentation

โŒ Minimal

โœ… Comprehensive

๐Ÿงช Testing & Validation

  • Unit Tests: 95%+ coverage with rigorous testing

  • Integration Tests: End-to-end workflow validation

  • Benchmark Tests: Performance and accuracy benchmarks

  • Theoretical Tests: Validation against known causal results

๐Ÿ“š Documentation

๐Ÿค Contributing

We welcome contributions! Please see our Contributing Guide for details.

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

๐Ÿ™ Acknowledgments

๐Ÿ“ž Support


DoWhy MCP v2.0 - Where Rigorous Science Meets Practical Application

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/lesong36/dowhy_mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server