Skip to main content
Glama

Meeting Transcript Analyzer

by vksinghh25

Meeting Transcript Analyzer - Multi-Agent MCP App

A multi-agent system that analyzes meeting transcripts using AI-powered summarization, key point extraction, and task identification. Fully compliant with the Model Context Protocol (MCP) standard.

Features

  • Modern Web UI: Clean, responsive horizontal layout interface for easy interaction (see screenshot)
  • Summarize: Generate concise summaries of meeting transcripts (see screenshot)
  • Key Highlights: Extract and display key points as bullet points (•) (see screenshot)
  • Grab Tasks: Identify actionable tasks from meeting discussions (see screenshot)
  • MCP Compliant: Full adherence to Model Context Protocol standards

MCP Compliance

This application is fully compliant with the Model Context Protocol (MCP) standard as defined in the official MCP specification:

✅ MCP Standard Implementation

  • Discovery Endpoint: /.well-known/mcp.json (MCP compliant)
  • Tool Schema: JSON Schema format with inputSchema property
  • Response Format: MCP-compliant content array with structured content
  • Request Format: Standard MCP invoke endpoint with name and arguments
  • Capabilities: Proper capabilities object in discovery response

🔧 MCP Endpoints

Each agent exposes MCP-compliant endpoints:

GET /.well-known/mcp.json # Tool discovery (MCP standard) POST /invoke # Tool invocation (MCP standard) GET /health # Health check

📋 MCP Tool Definitions

Summarizer Agent Tools:

  • summarize_transcript: Generates concise meeting summaries
  • highlight_key_points: Extracts 3-5 key insights as bullet points

Task Extractor Agent Tools:

  • extract_tasks: Identifies actionable tasks from transcripts

🔄 MCP Response Format

All tools return MCP-compliant responses:

{ "content": [ { "type": "text", "text": "Tool output content here..." } ] }

Prerequisites

  • Python 3.9+
  • OpenAI API key

Setup

  1. Install dependencies:
    pip install -r requirements.txt
  2. Configure OpenAI API Key: Create a file named openai_key.txt in the project root and add your OpenAI API key:
    sk-your-openai-api-key-here

Running the Agents

Important: All commands must be run from the project root directory.

Note: Start the sub-agents first, then the super agent to ensure proper tool registration.

1. Start the Summarizer Agent (Port 8001)

python3 -m uvicorn agents.summarizer_agent:summarizer_app --reload --port 8001

2. Start the Task Extractor Agent (Port 8002)

python3 -m uvicorn agents.task_extractor_agent:task_app --reload --port 8002

3. Start the Super Agent (Port 8000)

python3 -m uvicorn agents.super_agent:super_app --reload --port 8000

Using the Application

  1. Access the Web Interface: Open your browser and go to: http://localhost:8000
  2. Analyze a Transcript:
    • Paste your meeting transcript in the left textarea
    • Enter a prompt like "Summarize this meeting" or "Extract key points" in the second textarea
    • Click "Analyze Transcript"
  3. View Results:
    • Results appear in the right panel with structured formatting
    • Summaries appear as formatted paragraphs
    • Key points display as clean bullet points (•)
    • Tasks show as numbered actionable items
    • Metadata shows transcript length, tool used, and point/task counts

Application Screenshots

Welcome Page

Welcome Page The clean, modern interface users see when first opening the application.

Summarize Flow

Summarize Flow The application summarizing a meeting transcript with a brief, concise style.

Key Highlights Flow

Key Highlights Flow Extracting key insights and main points from a meeting transcript as bullet points.

Task Extraction Flow

Task Extraction Flow Identifying and extracting actionable tasks from meeting discussions.

Architecture

  • Super Agent (Port 8000): Main entry point that serves the web UI and orchestrates sub-agents
  • Summarizer Agent (Port 8001): Handles transcript summarization and key point extraction
  • Task Extractor Agent (Port 8002): Identifies and extracts actionable tasks from transcripts

Technical Details

  • Backend Formatting: All response formatting is handled by the super agent for consistent UI presentation
  • Structured Responses: Responses include type, title, content, and metadata fields
  • MCP Protocol: Uses Model Context Protocol for agent communication
  • Responsive Design: UI adapts to mobile devices with vertical stacking

MCP Integration

For MCP Clients

To integrate with MCP-compliant clients:

  1. Discover Tools:
    curl http://localhost:8001/.well-known/mcp.json curl http://localhost:8002/.well-known/mcp.json
  2. Invoke Tools:
    curl -X POST http://localhost:8001/invoke \ -H "Content-Type: application/json" \ -d '{"name": "summarize_transcript", "arguments": {"transcript": "Your transcript here..."}}'

MCP Client Libraries

This application works with any MCP-compliant client library:

For more information about the MCP standard, visit the official MCP specification and GitHub repository.

Troubleshooting

  • "ModuleNotFoundError: No module named 'agents'": Make sure you're running commands from the project root directory
  • "uvicorn: command not found": Use python3 -m uvicorn instead of just uvicorn
  • API Key Issues: Ensure openai_key.txt exists and contains a valid OpenAI API key
  • Port Conflicts: Make sure ports 8000, 8001, and 8002 are available
  • MCP Discovery Issues: Verify agents are running and accessible at their respective ports

Development

Code Formatting

To maintain consistent code style, use the provided formatting script:

python3 format_code.py

This will format all Python files with Black and HTML/Markdown files with Prettier.

Manual Formatting

You can also format files individually:

# Format Python files python3 -m black agents/ --line-length=88 # Format HTML and Markdown files prettier --write index.html README.md

File Structure

mcps/ ├── agents/ │ ├── __init__.py │ ├── summarizer_agent.py # MCP-compliant summarizer │ ├── task_extractor_agent.py # MCP-compliant task extractor │ ├── super_agent.py # Web UI coordinator & orchestrator │ ├── models.py │ ├── config.py │ └── utils.py ├── docs/ │ └── images/ │ ├── welcome-page.png │ ├── summarize-flow.png │ ├── key-highlights-flow.png │ └── task-extraction-flow.png ├── index.html ├── requirements.txt ├── README.md ├── format_code.py └── openai_key.txt (create this file)

Related MCP Servers

  • A
    security
    A
    license
    A
    quality
    An MCP server that enables users to list, download, search, and manage Zoom meeting transcripts through a structured interface.
    Last updated -
    6
    1
    JavaScript
    MIT License
  • A
    security
    F
    license
    A
    quality
    Enables access to Fireflies.ai API for retrieving, searching, and summarizing meeting transcripts with various filtering options and formats.
    Last updated -
    4
    3
    JavaScript
    • Apple
  • -
    security
    A
    license
    -
    quality
    A Model Context Protocol server that enables AI assistants to manage meeting data, including creating meeting bots, searching transcripts, and organizing calendar events.
    Last updated -
    19
    TypeScript
    MIT License
    • Apple
  • A
    security
    A
    license
    A
    quality
    A Model Context Protocol server that enables AI agents to join and interact with online meetings (Zoom and Google Meet), capturing transcripts and recordings to generate meeting summaries.
    Last updated -
    3
    6
    TypeScript
    MIT License

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/vksinghh25/mcps'

If you have feedback or need assistance with the MCP directory API, please join our Discord server