Skip to main content
Glama

Cross-LLM MCP Server

Trust Score

A Model Context Protocol (MCP) server that provides access to multiple Large Language Model (LLM) APIs including ChatGPT, Claude, DeepSeek, Gemini, Grok, Kimi, Perplexity, and Mistral. This allows you to call different LLMs from within any MCP-compatible client and combine their responses.

Features

This MCP server offers:

  • Eight specialized tools for interacting with different LLM providers

  • User preference system with tag-based model selection

  • Model tagging to identify models by their strengths (coding, business, reasoning, etc.)

  • Cost preference settings to favor flagship or cheaper models

šŸ¤– Individual LLM Tools

call-chatgpt

Call OpenAI's ChatGPT API with a prompt.

Input:

  • prompt (string): The prompt to send to ChatGPT

  • model (optional, string): ChatGPT model to use (default: gpt-4)

  • temperature (optional, number): Temperature for response randomness (0-2, default: 0.7)

  • max_tokens (optional, number): Maximum tokens in response (default: 1000)

Output:

  • ChatGPT response with model information and token usage statistics

Example:

ChatGPT Response Model: gpt-4 Here's a comprehensive explanation of quantum computing... --- Usage: - Prompt tokens: 15 - Completion tokens: 245 - Total tokens: 260

call-claude

Call Anthropic's Claude API with a prompt.

Input:

  • prompt (string): The prompt to send to Claude

  • model (optional, string): Claude model to use (default: claude-3-sonnet-20240229)

  • temperature (optional, number): Temperature for response randomness (0-1, default: 0.7)

  • max_tokens (optional, number): Maximum tokens in response (default: 1000)

Output:

  • Claude response with model information and token usage statistics

call-deepseek

Call DeepSeek API with a prompt.

Input:

  • prompt (string): The prompt to send to DeepSeek

  • model (optional, string): DeepSeek model to use (default: deepseek-chat)

  • temperature (optional, number): Temperature for response randomness (0-2, default: 0.7)

  • max_tokens (optional, number): Maximum tokens in response (default: 1000)

Output:

  • DeepSeek response with model information and token usage statistics

call-gemini

Call Google's Gemini API with a prompt.

Input:

  • prompt (string): The prompt to send to Gemini

  • model (optional, string): Gemini model to use (default: gemini-2.5-flash)

  • temperature (optional, number): Temperature for response randomness (0-2, default: 0.7)

  • max_tokens (optional, number): Maximum tokens in response (default: 1000)

Output:

  • Gemini response with model information and token usage statistics

call-grok

Call xAI's Grok API with a prompt.

Input:

  • prompt (string): The prompt to send to Grok

  • model (optional, string): Grok model to use (default: grok-3)

  • temperature (optional, number): Temperature for response randomness (0-2, default: 0.7)

  • max_tokens (optional, number): Maximum tokens in response (default: 1000)

Output:

  • Grok response with model information and token usage statistics

call-kimi

Call Moonshot AI's Kimi API with a prompt.

Input:

  • prompt (string): The prompt to send to Kimi

  • model (optional, string): Kimi model to use (default: moonshot-v1-8k)

  • temperature (optional, number): Temperature for response randomness (0-2, default: 0.7)

  • max_tokens (optional, number): Maximum tokens in response (default: 1000)

Output:

  • Kimi response with model information and token usage statistics

call-perplexity

Call Perplexity AI's API with a prompt.

Input:

  • prompt (string): The prompt to send to Perplexity

  • model (optional, string): Perplexity model to use (default: sonar-pro)

  • temperature (optional, number): Temperature for response randomness (0-2, default: 0.7)

  • max_tokens (optional, number): Maximum tokens in response (default: 1000)

Output:

  • Perplexity response with model information and token usage statistics

call-mistral

Call Mistral AI's API with a prompt.

Input:

  • prompt (string): The prompt to send to Mistral

  • model (optional, string): Mistral model to use (default: mistral-large-latest)

  • temperature (optional, number): Temperature for response randomness (0-2, default: 0.7)

  • max_tokens (optional, number): Maximum tokens in response (default: 1000)

Output:

  • Mistral response with model information and token usage statistics

šŸ”„ Combined Tools

call-all-llms

Call all available LLM APIs (ChatGPT, Claude, DeepSeek, Gemini, Grok, Kimi, Perplexity, Mistral) with the same prompt and get combined responses.

Input:

  • prompt (string): The prompt to send to all LLMs

  • temperature (optional, number): Temperature for response randomness (0-2, default: 0.7)

  • max_tokens (optional, number): Maximum tokens in response (default: 1000)

Output:

  • Combined responses from all LLMs with individual model information and usage statistics

  • Summary of successful responses and total tokens used

Example:

Multi-LLM Response Prompt: Explain quantum computing in simple terms --- ## CHATGPT Model: gpt-4 Quantum computing is like having a super-powered computer... --- ## CLAUDE Model: claude-3-sonnet-20240229 Quantum computing represents a fundamental shift... --- ## DEEPSEEK Model: deepseek-chat Quantum computing harnesses the principles of quantum mechanics... --- ## GEMINI Model: gemini-2.5-flash Quantum computing is a revolutionary approach to computation... --- Summary: - Successful responses: 4/4 - Total tokens used: 1650

call-llm

Call a specific LLM provider by name.

Input:

  • provider (string): The LLM provider to call ("chatgpt", "claude", "deepseek", or "gemini")

  • prompt (string): The prompt to send to the LLM

  • model (optional, string): Model to use (uses provider default if not specified)

  • temperature (optional, number): Temperature for response randomness (0-2, default: 0.7)

  • max_tokens (optional, number): Maximum tokens in response (default: 1000)

Output:

  • Response from the specified LLM with model information and usage statistics

āš™ļø User Preferences & Model Tagging

The server includes a comprehensive user preference system that allows you to customize model selection based on question types and tags.

get-user-preferences

Get your current user preferences including default model, cost preference, and tag-based model preferences.

Input:

  • No parameters required

Output:

  • Current preferences including:

    • Default model setting

    • Cost preference (flagship vs cheaper)

    • Tag-based preferences (which model to use for each tag)

    • Available tags and model counts

Example:

{ "tool": "get-user-preferences", "arguments": {} }

set-user-preferences

Set user preferences for default model, cost preference, and tag-based model selection.

Input:

  • defaultModel (optional, string): Default model name (e.g., 'deepseek-r1', 'gpt-4o')

  • costPreference (optional, "flagship" | "cheaper"): Cost preference setting

  • tagPreferences (optional, object): Map tags to model names

Output:

  • Confirmation of updated preferences with model details

Example - Setting Tag-Based Preferences:

{ "tool": "set-user-preferences", "arguments": { "tagPreferences": { "coding": "deepseek-r1", "general": "gpt-4o", "business": "claude-3.5-sonnet-20241022" } } }

This allows you to automatically use DeepSeek R1 for coding questions, GPT-4o for general queries, and Claude 3.5 Sonnet for business-related tasks.

get-models-by-tag

Get all models that match a specific tag to help you choose the best model for your needs.

Input:

  • tag (string): One of: "coding", "business", "reasoning", "math", "creative", "general"

Output:

  • List of all models with the specified tag, grouped by provider, including:

    • Model name

    • Cost tier (flagship, standard, budget)

    • All tags for the model

    • Description

Example:

{ "tool": "get-models-by-tag", "arguments": { "tag": "coding" } }

Model Tags

Models are tagged based on their strengths and ideal use cases:

  • coding: Models optimized for programming, code generation, and software development

    • Examples: deepseek-r1, deepseek-coder, gpt-4o, claude-3.5-sonnet-20241022

  • business: Models suited for business writing, analysis, and professional communication

    • Examples: claude-3-opus-20240229, gpt-4o, gemini-1.5-pro

  • reasoning: Models with advanced reasoning capabilities for complex problem-solving

    • Examples: deepseek-r1, o1-preview, claude-3.5-sonnet-20241022

  • math: Models specialized for mathematical problem-solving

    • Examples: deepseek-r1, o1-preview, o1-mini

  • creative: Models optimized for creative writing, storytelling, and artistic content

    • Examples: gpt-4o, claude-3-opus-20240229, gemini-1.5-pro

  • general: Versatile models for general-purpose tasks

    • Examples: gpt-4o-mini, claude-3-haiku-20240307, gemini-1.5-flash

Preference Storage

User preferences are stored in:

  • Unix/macOS: ~/.cross-llm-mcp/preferences.json

  • Windows: %APPDATA%/cross-llm-mcp/preferences.json

  • Fallback: Project directory .cross-llm-mcp/preferences.json

Preferences can also be set via environment variables:

  • CROSS_LLM_DEFAULT_MODEL: Default model name

  • CROSS_LLM_COST_PREFERENCE: "flagship" or "cheaper"

Example: Setting Up Tag-Based Preferences

Here's a complete example of setting up preferences for different question types:

{ "tool": "set-user-preferences", "arguments": { "defaultModel": "gpt-4o", "costPreference": "cheaper", "tagPreferences": { "coding": "deepseek-r1", "general": "gpt-4o", "business": "claude-3.5-sonnet-20241022", "reasoning": "deepseek-r1", "math": "deepseek-r1", "creative": "gpt-4o" } } }

This configuration will:

  • Use DeepSeek R1 for coding, reasoning, and math questions

  • Use GPT-4o for general and creative queries

  • Use Claude 3.5 Sonnet for business-related tasks

  • Prefer cheaper models when multiple options are available

Related MCP server: URL Fetch MCP

Installation

  1. Clone this repository:

git clone <repository-url> cd cross-llm-mcp
  1. Install dependencies:

npm install
  1. Build the project:

npm run build

Getting API Keys

OpenAI/ChatGPT

  1. Visit OpenAI Platform

  2. Sign up or log in to your account

  3. Create a new API key

  4. Add it to your .env file as OPENAI_API_KEY

Anthropic/Claude

  1. Visit Anthropic Console

  2. Sign up or log in to your account

  3. Create a new API key

  4. Add it to your .env file as ANTHROPIC_API_KEY

DeepSeek

  1. Visit DeepSeek Platform

  2. Sign up or log in to your account

  3. Create a new API key

  4. Add it to your .env file as DEEPSEEK_API_KEY

Google Gemini

  1. Visit Google AI Studio

  2. Sign up or log in to your Google account

  3. Create a new API key

  4. Add it to your Claude Desktop configuration as GEMINI_API_KEY

xAI/Grok

  1. Visit xAI Platform

  2. Sign up or log in to your account

  3. Create a new API key

  4. Add it to your Claude Desktop configuration as XAI_API_KEY

Moonshot AI/Kimi

  1. Visit Moonshot AI Platform

  2. Sign up or log in to your account

  3. Create a new API key

  4. Add it to your Claude Desktop configuration as KIMI_API_KEY

Perplexity AI

  1. Visit the Perplexity AI Platform

  2. Sign up or log in to your account

  3. Generate a new API key from the developer console

  4. Add it to your Claude Desktop configuration as PERPLEXITY_API_KEY

Mistral AI

  1. Visit the Mistral AI Console

  2. Sign up or log in to your account

  3. Create a new API key

  4. Add it to your Claude Desktop configuration as MISTRAL_API_KEY

Usage

Configuring Claude Desktop

Add the following configuration to your Claude Desktop MCP settings:

{ "cross-llm-mcp": { "command": "node", "args": ["/path/to/your/cross-llm-mcp/build/index.js"], "cwd": "/path/to/your/cross-llm-mcp", "env": { "OPENAI_API_KEY": "your_openai_api_key_here", "ANTHROPIC_API_KEY": "your_anthropic_api_key_here", "DEEPSEEK_API_KEY": "your_deepseek_api_key_here", "GEMINI_API_KEY": "your_gemini_api_key_here", "XAI_API_KEY": "your_grok_api_key_here", "KIMI_API_KEY": "your_kimi_api_key_here", "PERPLEXITY_API_KEY": "your_perplexity_api_key_here", "MISTRAL_API_KEY": "your_mistral_api_key_here" } } }

Replace the paths and API keys with your actual values:

  • Update the args path to point to your build/index.js file

  • Update the cwd path to your project directory

  • Add your actual API keys to the env section

Running the Server

The server runs automatically when configured in Claude Desktop. You can also run it manually:

npm start

The server runs on stdio and can be connected to any MCP-compatible client.

Example Queries

Here are some example queries you can make with this MCP server:

Call ChatGPT

{ "tool": "call-chatgpt", "arguments": { "prompt": "Explain quantum computing in simple terms", "temperature": 0.7, "max_tokens": 500 } }

Call Claude

{ "tool": "call-claude", "arguments": { "prompt": "What are the benefits of renewable energy?", "model": "claude-3-sonnet-20240229" } }

Call All LLMs

{ "tool": "call-all-llms", "arguments": { "prompt": "Write a short poem about artificial intelligence", "temperature": 0.8 } }

Call Specific LLM

{ "tool": "call-llm", "arguments": { "provider": "deepseek", "prompt": "Explain machine learning algorithms", "max_tokens": 800 } }

Call Gemini

{ "tool": "call-gemini", "arguments": { "prompt": "Write a creative story about AI", "model": "gemini-2.5-flash", "temperature": 0.9 } }

Call Grok

{ "tool": "call-grok", "arguments": { "prompt": "Tell me a joke about programming", "model": "grok-3", "temperature": 0.8 } }

Call Kimi

{ "tool": "call-kimi", "arguments": { "prompt": "Summarise the plot of The Matrix in two sentences", "model": "moonshot-v1-8k", "temperature": 0.7 } }

Call Perplexity

{ "tool": "call-perplexity", "arguments": { "prompt": "Summarize the latest AI research highlights in two paragraphs", "model": "sonar-medium-online", "temperature": 0.6 } }

Call Mistral

{ "tool": "call-mistral", "arguments": { "prompt": "Draft a concise product update for stakeholders", "model": "mistral-large-latest", "temperature": 0.7 } }

Use Cases

1. Multi-Perspective Analysis

Use call-all-llms to get different perspectives on the same topic from multiple AI models.

2. Model Comparison

Compare responses from different LLMs to understand their strengths and weaknesses.

3. Redundancy and Reliability

If one LLM is unavailable, you can still get responses from other providers.

4. Cost Optimization

Choose the most cost-effective LLM for your specific use case.

5. Quality Assurance

Cross-reference responses from multiple models to validate information.

6. Intelligent Model Selection

Use tag-based preferences to automatically select the best model for each question type. For example, use DeepSeek R1 for coding questions and GPT-4o for general queries.

Configuration

Claude Desktop Setup

The recommended way to use this MCP server is through Claude Desktop with environment variables configured directly in the MCP settings:

{ "cross-llm-mcp": { "command": "node", "args": [ "/Users/jamessangalli/Documents/projects/cross-llm-mcp/build/index.js" ], "cwd": "/Users/jamessangalli/Documents/projects/cross-llm-mcp", "env": { "OPENAI_API_KEY": "sk-proj-your-openai-key-here", "ANTHROPIC_API_KEY": "sk-ant-your-anthropic-key-here", "DEEPSEEK_API_KEY": "sk-your-deepseek-key-here", "GEMINI_API_KEY": "your-gemini-api-key-here" } } }

Environment Variables

The server reads the following environment variables:

  • OPENAI_API_KEY: Your OpenAI API key

  • ANTHROPIC_API_KEY: Your Anthropic API key

  • DEEPSEEK_API_KEY: Your DeepSeek API key

  • GEMINI_API_KEY: Your Google Gemini API key

  • XAI_API_KEY: Your xAI Grok API key

  • KIMI_API_KEY: Your Moonshot AI Kimi API key

  • PERPLEXITY_API_KEY: Your Perplexity AI API key

  • MISTRAL_API_KEY: Your Mistral AI API key

  • DEFAULT_CHATGPT_MODEL: Default ChatGPT model (default: gpt-4)

  • DEFAULT_CLAUDE_MODEL: Default Claude model (default: claude-3-sonnet-20240229)

  • DEFAULT_DEEPSEEK_MODEL: Default DeepSeek model (default: deepseek-chat)

  • DEFAULT_GEMINI_MODEL: Default Gemini model (default: gemini-2.5-flash)

  • DEFAULT_GROK_MODEL: Default Grok model (default: grok-3)

  • DEFAULT_KIMI_MODEL: Default Kimi model (default: moonshot-v1-8k)

  • DEFAULT_PERPLEXITY_MODEL: Default Perplexity model (default: sonar-pro)

  • DEFAULT_MISTRAL_MODEL: Default Mistral model (default: mistral-large-latest)

  • CROSS_LLM_DEFAULT_MODEL: User's default model preference

  • CROSS_LLM_COST_PREFERENCE: User's cost preference ("flagship" or "cheaper")

API Endpoints

This MCP server uses the following API endpoints:

  • OpenAI: https://api.openai.com/v1/chat/completions

  • Anthropic: https://api.anthropic.com/v1/messages

  • DeepSeek: https://api.deepseek.com/v1/chat/completions

  • Google Gemini: https://generativelanguage.googleapis.com/v1/models/{model}:generateContent

  • xAI Grok: https://api.x.ai/v1/chat/completions

  • Moonshot AI Kimi: https://api.moonshot.ai/v1/chat/completions

  • Perplexity AI: https://api.perplexity.ai/chat/completions

  • Mistral AI: https://api.mistral.ai/v1/chat/completions

Error Handling

The server includes comprehensive error handling with detailed messages:

Missing API Key

**ChatGPT Error:** OpenAI API key not configured

Invalid API Key

**Claude Error:** Claude API error: Invalid API key - please check your Anthropic API key

Rate Limiting

**DeepSeek Error:** DeepSeek API error: Rate limit exceeded - please try again later

Payment Issues

**ChatGPT Error:** ChatGPT API error: Payment required - please check your OpenAI billing

Network Issues

**Claude Error:** Claude API error: Network timeout

Supported Models

All models are tagged with their strengths (coding, business, reasoning, math, creative, general). Use the get-models-by-tag tool to find models optimized for specific use cases.

ChatGPT Models

  • gpt-4

  • gpt-4-turbo

  • gpt-3.5-turbo

  • And other OpenAI models

Claude Models

  • claude-3-sonnet-20240229

  • claude-3-opus-20240229

  • claude-3-haiku-20240307

  • And other Anthropic models

DeepSeek Models

  • deepseek-chat

  • deepseek-coder

  • And other DeepSeek models

Gemini Models

  • gemini-2.5-flash (default)

  • gemini-2.5-pro

  • gemini-2.0-flash

  • gemini-2.0-flash-001

  • And other Google Gemini models

Grok Models

  • grok-3 (default)

  • And other xAI Grok models

Kimi Models

  • moonshot-v1-8k (default)

  • moonshot-v1-32k

  • moonshot-v1-128k

  • And other Moonshot AI Kimi models

Perplexity Models

  • sonar-pro (default)

  • sonar-small-online

  • sonar-medium

  • And other Perplexity models

Mistral Models

  • mistral-large-latest (default)

  • mistral-small-latest

  • mixtral-8x7b-32768

  • And other Mistral models

Project Structure

cross-llm-mcp/ ā”œā”€ā”€ src/ │ ā”œā”€ā”€ index.ts # Main MCP server with all tools │ ā”œā”€ā”€ types.ts # TypeScript type definitions │ ā”œā”€ā”€ llm-clients.ts # LLM API client implementations │ ā”œā”€ā”€ model-registry.ts # Model registry with tags and metadata │ └── preferences.ts # User preferences management ā”œā”€ā”€ build/ # Compiled JavaScript output ā”œā”€ā”€ env.example # Environment variables template ā”œā”€ā”€ example-usage.md # Detailed usage examples ā”œā”€ā”€ package.json # Project dependencies and scripts └── README.md # This file

Dependencies

  • @modelcontextprotocol/sdk - MCP SDK for server implementation

  • superagent - HTTP client for API requests

  • zod - Schema validation for tool parameters

Development

Building the Project

npm run build

Adding New LLM Providers

To add a new LLM provider:

  1. Add the provider type to src/types.ts

  2. Implement the client in src/llm-clients.ts

  3. Add the tool to src/index.ts

  4. Update the callAllLLMs method to include the new provider

Troubleshooting

Common Issues

Server won't start

  • Check that all dependencies are installed: npm install

  • Verify the build was successful: npm run build

  • Ensure the .env file exists and has valid API keys

API errors

  • Verify your API keys are correct and active

  • Check your API usage limits and billing status

  • Ensure you're using supported model names

No responses

  • Check that at least one API key is configured

  • Verify network connectivity

  • Look for error messages in the response

Debug Mode

For debugging, you can run the server directly:

node build/index.js

Donate

If you find this project useful, consider supporting it with Bitcoin:

⚔ Lightning Network

lnbc1pjhhsqepp5mjgwnvg0z53shm22hfe9us289lnaqkwv8rn2s0rtekg5vvj56xnqdqqcqzzsxqyz5vqsp5gu6vh9hyp94c7t3tkpqrp2r059t4vrw7ps78a4n0a2u52678c7yq9qyyssq7zcferywka50wcy75skjfrdrk930cuyx24rg55cwfuzxs49rc9c53mpz6zug5y2544pt8y9jflnq0ltlha26ed846jh0y7n4gm8jd3qqaautqa

₿ On-Chain

bc1ptzvr93pn959xq4et6sqzpfnkk2args22ewv5u2th4ps7hshfaqrshe0xtp

Īž Ethereum / EVM Networks

0x42ea529282DDE0AA87B42d9E83316eb23FE62c3f

Donations from any EVM-compatible network (Ethereum, Polygon, Arbitrum, Optimism, BSC, Avalanche, etc.) will work perfectly! You can also send tokens like USDT, USDC, DAI, and other ERC-20 tokens to this address.

License

This project is licensed under the MIT License - see the LICENSE.md file for details.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Support

If you encounter any issues or have questions, please:

  1. Check the troubleshooting section above

  2. Review the error messages for specific guidance

  3. Ensure your API keys are properly configured

  4. Verify your network connectivity

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/JamesANZ/cross-llm-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server