Skip to main content
Glama
test_projection.py1.1 kB
#!/usr/bin/env python3 """Test script to verify VectorSearchApp projection works""" import iris import pandas as pd # Credentials server_location = "localhost" port_number = 32782 namespace = "DEMO" user_name = "_SYSTEM" password = "ISCDEMO" print("Connecting to IRIS database...") conn = iris.connect(server_location, port_number, namespace, user_name, password) cursor = conn.cursor() # Test query sql = """SELECT DocumentReferenceContentAttachmentData, DocumentReferenceSubjectReference FROM VectorSearchApp.DocumentReference""" print("Executing query...") cursor.execute(sql) print("Fetching results...") result_set = cursor.fetchall() # Create DataFrame cols = ["ClinicalNotes", "Patient"] df = pd.DataFrame(result_set, columns=cols) print(f"\n✅ Success! Found {len(df)} clinical notes") print("\nFirst few rows:") print(df.head()) # Extract Patient IDs df["PatientID"] = pd.to_numeric(df["Patient"].astype(str).str.strip("Patient/")) print(f"\nPatient IDs: {sorted(df['PatientID'].unique())}") # Close connection cursor.close() conn.close() print("\n✅ Connection closed successfully")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/isc-tdyar/medical-graphrag-assistant'

If you have feedback or need assistance with the MCP directory API, please join our Discord server