Skip to main content
Glama
docker-compose.licensed.x64.yml•2.79 kB
# Docker Compose for Licensed IRIS with ACORN=1 HNSW Optimization # FHIR AI Hackathon Kit - Enterprise Edition (x86/AMD64) # For AWS deployment on x86 instances (EC2, ECS, etc.) # # IRIS Enterprise Features: # - ACORN=1 HNSW optimization for vector search # - Enhanced ML capabilities # - Production-ready performance # # Architecture: x86/AMD64 (for AWS, most cloud providers) # License: iris.x64.key (Ubuntu-x64) services: iris-fhir-licensed: image: intersystemsdc/iris-community:2025.3.0EHAT.127.0 # x86 image (no arm64 suffix) container_name: iris-fhir-licensed platform: linux/amd64 # Force x86 platform ports: - "32782:1972" # IRIS SuperServer port (same as current iris-fhir) - "32783:52773" # IRIS Management Portal (same as current iris-fhir) environment: - IRISNAMESPACE=DEMO # FHIR data namespace - ISC_DEFAULT_PASSWORD=ISCDEMO # Match current FHIR setup volumes: - iris-fhir-licensed-data:/usr/irissys/mgr # Named volume for persistence - .:/home/irisowner/dev # Mount project directory - ./iris.x64.key:/usr/irissys/mgr/iris.key # x86 Enterprise license key stdin_open: true tty: true healthcheck: test: ["CMD", "/usr/irissys/bin/iris", "session", "iris", "-U%SYS", "##class(%SYSTEM.Process).CurrentDirectory()"] interval: 15s timeout: 10s retries: 5 start_period: 60s command: --check-caps false volumes: iris-fhir-licensed-data: {} # ============================================================================= # USAGE INSTRUCTIONS - AWS x86 DEPLOYMENT # ============================================================================= # # 1. USE THIS FILE FOR: # - AWS EC2 instances (t3, m5, c5, g4dn, etc.) # - AWS ECS/Fargate (x86) # - Most cloud providers (GCP, Azure) # - Local x86 Linux machines # # 2. ARCHITECTURE DIFFERENCES: # ARM64 (Mac): docker-compose.licensed.yml + iris.key # x86 (AWS): docker-compose.licensed.x64.yml + iris.x64.key # # 3. START ON AWS: # docker-compose -f docker-compose.licensed.x64.yml up -d # # 4. VERIFY LICENSE: # docker exec iris-fhir-licensed iris session iris -U%SYS "##class(%SYSTEM.License).DisplayActivated()" # # 5. EXPECTED PERFORMANCE (AWS g5.xlarge): # - Text vector search (3072-dim, 200K docs): <30ms # - Image vector search (1024-dim, 944 images): <5ms # - Cross-modal search: <50ms # - Multi-modal fusion: <100ms # - Throughput: 2000+ queries/sec # # 6. RECOMMENDED AWS INSTANCE TYPES: # - g5.xlarge: NVIDIA A10G GPU, 4 vCPU, 16 GB RAM ($1.006/hr) # - m5.xlarge: General purpose, 4 vCPU, 16 GB RAM ($0.192/hr) # - t3.xlarge: Burstable, 4 vCPU, 16 GB RAM ($0.1664/hr) # # Note: iris.x64.key is licensed for "Container(Ubuntu-x64)"

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/isc-tdyar/medical-graphrag-assistant'

If you have feedback or need assistance with the MCP directory API, please join our Discord server