TODO.md•7.58 kB
# TODO: FHIR AI Hackathon Kit
## Completed ✅
### Tutorial Series
- [x] Complete Tutorial 1: FHIR SQL Builder
- [x] Complete Tutorial 2: Creating Vector Database
- [x] Complete Tutorial 3: Vector Search & LLM Prompting
- [x] Document tutorial feedback in FEEDBACK_SUMMARY.md
### Direct FHIR Integration
- [x] Proof of concept: Direct access to FHIR native tables
- [x] Companion vector table pattern
- [x] Document in DIRECT_FHIR_VECTOR_SUCCESS.md
### GraphRAG Knowledge Graph (MVP)
- [x] Phase 1: Setup (T001-T006)
- [x] Project structure (src/adapters, src/extractors, src/setup, config, tests)
- [x] Configuration files and fixtures
- [x] Verify rag-templates accessibility
- [x] Phase 2: Foundational (T007-T011)
- [x] RAG.Entities table with VECTOR(DOUBLE, 384)
- [x] RAG.EntityRelationships table
- [x] Document IRIS vector type in constitution.md
- [x] Phase 3: User Story 1 - Entity Extraction (T012-T030)
- [x] FHIR document adapter (hex decoding)
- [x] Medical entity extractor (6 entity types)
- [x] GraphRAG setup script (init/build/stats modes)
- [x] Extract 171 entities from 51 documents
- [x] Identify 10 relationships
### Auto-Sync Feature
- [x] Implement incremental sync mode (--mode=sync)
- [x] Create trigger setup script with 3 options
- [x] Document cron/systemd/launchd setup
- [x] Test incremental sync (0.10 sec when no changes)
- [x] Create TRIGGER_SYNC_SUMMARY.md
### Phase 4: Multi-Modal Search ✅ COMPLETE
- [x] T031-T042: Implement src/query/fhir_graphrag_query.py
- [x] RRF fusion: Vector + Text + Graph search
- [x] Natural language queries
- [x] Demo queries and examples
- [x] Fix PyTorch environment (downgrade PyTorch)
- [x] Fix text search (decode hex-encoded clinical notes)
- [x] Test full multi-modal query: Vector (30) + Text (23) + Graph (9) in 0.242s
### Phase 6: Integration Testing ✅ COMPLETE
- [x] T055-T064: Create comprehensive test suite
- [x] Database schema validation
- [x] FHIR data integrity tests
- [x] Vector search functionality tests
- [x] Text search with hex decoding tests
- [x] Graph entity search tests
- [x] RRF fusion tests
- [x] Patient filtering tests
- [x] Edge case validation
- [x] Performance benchmarks
- [x] Entity extraction quality tests
- [x] **Result: 13/13 tests passing (100%)**
## In Progress 🚧
### NVIDIA NIM Multimodal Integration (Priority P0) - PLANNING COMPLETE ✅
**Phase 1: Large-Scale Test Dataset**
- [ ] Install Synthea or download pre-generated 1M patient dataset
- [ ] Generate/subset 10,000 synthetic patients in FHIR R4 format
- [ ] Access MIMIC-CXR dataset (PhysioNet credentialed access)
- [ ] Download 500-2,000 chest X-ray DICOM files + radiology reports
- [ ] Create ImagingStudy FHIR resources linking images to synthetic patients
- [ ] Load dataset into IRIS FHIR repository
- [ ] Verify: 10K patients, 500+ ImagingStudy, 20K+ total resources
**Phase 2: Multimodal Architecture**
- [ ] Create VectorSearch.FHIRTextVectors table (1024-dim for NIM text embeddings)
- [ ] Create VectorSearch.FHIRImageVectors table (TBD-dim for NIM vision embeddings)
- [ ] Implement FHIRModalityDetector class (text vs. image detection)
- [ ] Design cross-modal RRF fusion algorithm (text + image + graph)
- [ ] Update integration tests for multimodal support
**Phase 3: NIM Text Embeddings**
- [ ] Get NVIDIA API key from build.nvidia.com
- [ ] Install langchain-nvidia-ai-endpoints
- [ ] Implement NIMTextEmbeddings class (NV-EmbedQA-E5-v5)
- [ ] Create nim_text_vectorize.py script
- [ ] Re-vectorize existing 51 DocumentReferences with NIM embeddings
- [ ] Test query performance vs. SentenceTransformer baseline
- [ ] Update fhir_graphrag_query.py to use NIM embeddings
**Phase 4: NIM Vision Embeddings**
- [ ] Research NIM vision API documentation (Nemotron Nano VL)
- [ ] Install pydicom for DICOM processing
- [ ] Implement DICOMExtractor class
- [ ] Implement NIMVisionEmbeddings class
- [ ] Create nim_image_vectorize.py script
- [ ] Vectorize all ImagingStudy images with NIM vision embeddings
- [ ] Test image search functionality
**Phase 5: Cross-Modal Query**
- [ ] Implement FHIRMultimodalQuery class
- [ ] Add text_search() method (NIM text embeddings)
- [ ] Add image_search() method (NIM vision embeddings)
- [ ] Add rrf_fusion() method (text + image + graph)
- [ ] Create multimodal query CLI interface
- [ ] Performance benchmarking with 10K+ dataset
- [ ] Integration tests for multimodal search (target: 20/20 passing)
**Documentation Created**:
- ✅ STATUS.md updated with NVIDIA NIM research findings
- ✅ NVIDIA_NIM_MULTIMODAL_PLAN.md (comprehensive implementation plan)
### Optional Enhancements (Not Started)
**Phase 5: Performance Optimization (Priority P3)** - Optional
- [ ] T043-T054: Batch processing
- [ ] Parallel extraction with workers
- [ ] Query performance tuning
- [ ] Additional performance benchmarks
**Phase 7: Production Polish** - Optional
- [ ] T065-T074: Documentation and docstrings
- [ ] Type hints for all functions
- [ ] Monitoring metrics
- [ ] Production deployment checklist
## Pending Feedback Items
### Tutorial Feedback (for PR to gabriel-ing/FHIR-AI-Hackathon-Kit)
**Tutorial 1 Issues**:
- [ ] (Note issues as we find them)
**Tutorial 2 Issues**:
- [ ] Remove unused `import base64` - only `bytes.fromhex()` is actually used
- [ ] Add explanation about Utils module location
- [ ] Add note about harmless IRIS warnings
- [ ] Add `DROP TABLE IF EXISTS` pattern
- [ ] Consider showing only faster insertion method (executemany)
- [ ] Fix naming inconsistency: "Notes_Vector" vs "NotesVector"
**Tutorial 3 Issues**:
- [ ] Fix SQL injection vulnerability in vector_search function
- [ ] Add error handling for when Ollama isn't running
- [ ] Add clear instructions to pull gemma3 model
- [ ] Clarify which model to use (gemma3:1b vs gemma3:4b)
- [ ] Make LangChain/conversation memory its own section
- [ ] Add note about model size requirements
## Production Deployment Tasks
### Auto-Sync Setup (Recommended)
- [ ] Set up cron job for incremental sync every 5 minutes
- [ ] Configure log rotation for kg_sync.log
- [ ] Set up monitoring alerts for sync failures
- [ ] Test sync with simulated FHIR data changes
### Documentation
- [ ] Add README.md with quick start guide
- [ ] Create troubleshooting guide
- [ ] Document example queries
- [ ] Add performance tuning guide
## Notes
**Current Status**: Phase 6 Integration Testing COMPLETE ✅
**Implementation Complete**:
- ✅ Direct FHIR integration (Phase 0)
- ✅ Knowledge graph extraction (Phases 1-3)
- ✅ Auto-sync feature
- ✅ Multi-modal search (Phase 4)
- ✅ Integration testing (Phase 6)
**Performance Metrics**:
- **Vector search**: 30 semantic matches in 1.038s
- **Text search**: 23 keyword matches in 0.018s (hex decoding)
- **Graph search**: 9 entity matches in 0.014s
- **Full multi-modal**: 0.242s query time
- **Fast query**: 0.006s query time (4x faster)
- **Knowledge graph**: 171 entities, 10 relationships
**Quality Metrics**:
- **Integration tests**: 13/13 passing (100%)
- **Entity extraction**: 100% high confidence
- **Data integrity**: All tables validated
- **Error handling**: All edge cases passed
**Architecture**:
- Zero modifications to FHIR schema
- Backward compatible with direct_fhir_vector_approach.py
- Production-ready with comprehensive test coverage
**Next Decision Point**:
- Continue with Phase 5 (Performance Optimization)?
- Set up production auto-sync?
- Create PR with tutorial feedback?
- Deploy multi-modal search for production use?
- Move to Phase 7 (Production Polish)?