STATUS.mdā¢27 kB
# Special Task: Direct FHIR Table Vector Integration
## Goal
Bypass FHIR SQL Builder and add vector columns directly to FHIR repository's native tables
## Current Approach (Tutorial)
1. FHIR Server stores resources
2. SQL Builder creates projection ā VectorSearchApp.DocumentReference
3. Python extracts data, creates vectors
4. New table created ā VectorSearch.DocRefVectors
## Target Approach (Direct)
1. FHIR Server stores resources
2. **Add vector column directly to FHIR native table**
3. **Compute vectors on insert/update (ObjectScript trigger?)**
4. Query directly from FHIR tables
## Advantages
- No SQL Builder configuration needed
- Vectors stay with source data
- Automatically updates with new FHIR resources
- More elegant architecture
## Status
ā
Found the FHIR resource storage!
## Discovery
**Master Resource Table**: `HSFHIR_X0001_R.Rsrc`
- Contains 2,739 FHIR resources
- `ResourceString` column has full FHIR JSON
- Clinical notes at: `JSON.content[0].attachment.data` (hex-encoded)
**Decoding Process**:
```python
import json
data = json.loads(resource_string)
encoded = data['content'][0]['attachment']['data']
decoded = bytes.fromhex(encoded).decode('utf-8')
```
## Proposed Approach
Create companion vector table: `HSFHIR_X0001_R.RsrcVector`
**Advantages**:
- No modification to core FHIR schema
- Clean separation of concerns
- Easy JOIN: `Rsrc INNER JOIN RsrcVector ON Rsrc.ID = RsrcVector.ResourceID`
- Can add vectors for any resource type
**Schema**:
```sql
CREATE TABLE HSFHIR_X0001_R.RsrcVector (
ResourceID BIGINT PRIMARY KEY,
ResourceType VARCHAR(50),
Vector VECTOR(DOUBLE, 384),
VectorModel VARCHAR(100),
LastUpdated TIMESTAMP
)
```
**Next**: Implement and test!
## ā
PROOF OF CONCEPT COMPLETE!
Successfully demonstrated:
- Direct access to FHIR native storage
- Companion vector table without schema modification
- Vector search with JOIN to native FHIR resources
- No SQL Builder configuration required!
See: **DIRECT_FHIR_VECTOR_SUCCESS.md** for full details.
---
# NEW TASK: GraphRAG Implementation
## Goal
Implement GraphRAG using rag-templates library with BYOT (Bring Your Own Table) overlay mode
## Research Complete ā
### Key Findings
1. **rag-templates location**: `/Users/tdyar/ws/rag-templates`
2. **GraphRAG pipeline**: `iris_rag/pipelines/graphrag.py` (production-hardened)
3. **BYOT support**: Configure custom `table_name` in `storage:iris` config
4. **Entity extraction**: Built-in medical entity extraction with DSPy
5. **Multi-modal search**: Vector + Text + Graph with RRF (Reciprocal Rank Fusion)
### Architecture
```
rag-templates GraphRAG:
- Unified API: create_pipeline('graphrag')
- Zero-copy BYOT: storage:iris:table_name configuration
- Knowledge graph tables: RAG.Entities, RAG.EntityRelationships
- Medical entities: SYMPTOM, CONDITION, MEDICATION, PROCEDURE, etc.
- Entity relationships: TREATS, CAUSES, LOCATED_IN, CO_OCCURS_WITH
```
### Integration Plan
Leverage existing direct FHIR approach with GraphRAG overlay:
```
HSFHIR_X0001_R.Rsrc (FHIR native)
āāā VectorSearch.FHIRResourceVectors (existing vectors)
āāā RAG.Entities + RAG.EntityRelationships (NEW: knowledge graph)
```
## Implementation Plan Created ā
See: **GRAPHRAG_IMPLEMENTATION_PLAN.md** for complete details
### Planned Components
1. `config/fhir_graphrag_config.yaml` - BYOT configuration
2. `fhir_document_adapter.py` - FHIR ā Document adapter
3. `fhir_graphrag_setup.py` - Pipeline initialization
4. `fhir_graphrag_query.py` - Multi-modal query interface
5. `medical_entity_extractor.py` - Medical entity extraction
### Next Steps
1. Create directory structure
2. Implement Phase 1: BYOT configuration
3. Test entity extraction on existing 51 DocumentReferences
4. Validate GraphRAG queries
5. Benchmark performance vs. vector-only approach
## Status: MVP COMPLETE ā
### Implementation Complete (Phases 1-3)
**Completed**: GraphRAG knowledge graph extraction with automatic synchronization
### What Works Now ā
1. **Knowledge Graph Tables**
- `RAG.Entities` - Medical entities with native VECTOR(DOUBLE, 384) embeddings
- `RAG.EntityRelationships` - Entity relationships with confidence scores
2. **Entity Extraction**
- 6 entity types: SYMPTOM, CONDITION, MEDICATION, PROCEDURE, BODY_PART, TEMPORAL
- Regex-based extraction with confidence scoring
- Relationship mapping: TREATS, CAUSES, LOCATED_IN, CO_OCCURS_WITH, PRECEDES
3. **Setup and Build**
- `python3 src/setup/fhir_graphrag_setup.py --mode=init` - Create tables
- `python3 src/setup/fhir_graphrag_setup.py --mode=build` - Extract entities
- `python3 src/setup/fhir_graphrag_setup.py --mode=stats` - View statistics
4. **Automatic Synchronization**
- `python3 src/setup/fhir_graphrag_setup.py --mode=sync` - Incremental updates
- Only processes resources WHERE `LastModified > MAX(ExtractedAt)`
- Can be scheduled via cron/systemd/launchd
### Results Achieved
**Knowledge Graph Build (51 DocumentReference resources)**:
- 171 entities extracted (56 symptoms, 51 temporal, 27 body parts, 23 conditions, 9 medications, 5 procedures)
- 10 relationships identified (CO_OCCURS_WITH)
- Processing time: 0.22 seconds total
- Average: 0.004 seconds per document
**Incremental Sync Performance**:
- No changes: 0.10 seconds
- 1 resource changed: ~0.5 seconds
- Suitable for scheduled execution every 1-5 minutes
### Architecture Achieved
```
HSFHIR_X0001_R.Rsrc (FHIR native - UNCHANGED, read-only overlay)
āāā VectorSearch.FHIRResourceVectors (existing vectors - PRESERVED)
āāā RAG.Entities + RAG.EntityRelationships (NEW: knowledge graph)
```
**Zero modifications to FHIR schema** ā
**Backward compatible with direct_fhir_vector_approach.py** ā
### Files Created
**Core Implementation**:
- `src/adapters/fhir_document_adapter.py` - FHIR JSON to Document conversion
- `src/extractors/medical_entity_extractor.py` - Medical entity extraction
- `src/setup/create_knowledge_graph_tables.py` - DDL for KG tables
- `src/setup/fhir_graphrag_setup.py` - Main orchestration (init/build/sync/stats)
- `config/fhir_graphrag_config.yaml` - BYOT configuration
**Auto-Sync Components**:
- `src/setup/fhir_kg_trigger.py` - Trigger setup script (3 implementation options)
- `src/setup/fhir_kg_trigger_helper.py` - Embedded Python helper for triggers
- `docs/kg-auto-sync-setup.md` - Complete setup guide
- `TRIGGER_SYNC_SUMMARY.md` - Quick reference and testing guide
**Memory and Specifications**:
- `.specify/memory/constitution.md` - IRIS vector type knowledge (CRITICAL)
- `specs/001-fhir-graphrag/` - Complete specification, plan, tasks, contracts
### Search Capabilities Implemented ā
**Graph-Based Semantic Search** (WORKING):
```bash
python3 src/query/fhir_simple_query.py "chest pain" --top-k 3
```
Results in 0.003 seconds:
- Searches 171 medical entities across 51 documents
- Entity-based semantic matching (SYMPTOM, CONDITION, MEDICATION, etc.)
- RRF fusion combines text + graph ranking
- Shows extracted entities with confidence scores
**Example Query Results**:
- Query: "chest pain"
- Found: 9 documents with matching entities
- Top results show: chest pain (SYMPTOM), abdominal pain (SYMPTOM), dyspnea (SYMPTOM), hypertension (CONDITION)
- Response time: < 0.01 seconds
### Phase 4: Multi-Modal Search ā
COMPLETE
**Full GraphRAG multi-modal search now working!**
Query: `python3 src/query/fhir_graphrag_query.py "chest pain" --top-k 5`
**All Three Search Methods Functional**:
- ā
**Vector Search** (30 results): Semantic similarity using SentenceTransformer embeddings
- ā
**Text Search** (23 results): Keyword matching in decoded clinical notes
- ā
**Graph Search** (9 results): Entity-based semantic matching via knowledge graph
- ā
**RRF Fusion**: Combines all three sources with Reciprocal Rank Fusion
**Performance**:
- Query latency: 0.242 seconds (full multi-modal with 51 documents)
- Simple query (text + graph only): 0.063 seconds
**Issue Resolved**: PyTorch/SentenceTransformer segfault fixed by downgrading PyTorch
**Text Search Fixed**: Now decodes hex-encoded clinical notes before keyword matching
- Previous: Searched raw JSON with hex data (0 results)
- Current: Decodes clinical notes first (23 results for "chest pain")
**Query Interfaces**:
1. `src/query/fhir_graphrag_query.py` - Full multi-modal (vector + text + graph)
2. `src/query/fhir_simple_query.py` - Fast query (text + graph, no vector encoding)
### Phase 6: Integration Testing ā
COMPLETE
**Full integration test suite passing!**
Test suite: `tests/test_integration.py`
Results: **13/13 tests passed (100% pass rate)**
**Test Coverage**:
1. ā
Database Schema - All tables populated
2. ā
FHIR Data Integrity - 51 DocumentReferences parseable
3. ā
Vector Table - 51 vectors created
4. ā
Knowledge Graph - 171 entities, 10 relationships
5. ā
Vector Search - Semantic similarity working
6. ā
Text Search - Hex decoding functional (23 results)
7. ā
Graph Search - Entity matching working (9 results)
8. ā
RRF Fusion - Multi-modal combining correctly
9. ā
Patient Filtering - Compartment filtering working
10. ā
Full Multi-Modal Query - End-to-end in 0.242s
11. ā
Fast Query - Text + Graph in 0.006s
12. ā
Edge Cases - Graceful error handling
13. ā
Entity Quality - 100% high confidence
**Key Findings**:
- All components working seamlessly together
- Performance excellent: Fast query in 6ms, full multi-modal in 242ms
- Entity extraction quality: 100% high confidence
- No exceptions or failures in any test
See `INTEGRATION_TEST_RESULTS.md` for detailed results.
### Next Steps (Optional)
**Phase 5: Performance Optimization (Priority P3)**
- Batch processing for entity extraction
- Parallel extraction with multiple workers
- Query performance optimizations
**Phase 6: Integration Testing**
- End-to-end workflow tests
- Edge case validation
- Performance benchmarks
**Phase 7: Production Polish**
- Comprehensive documentation
- Type hints and docstrings
- Monitoring metrics
### Production Deployment
**Recommended Auto-Sync Setup** (macOS with cron):
```bash
# Create logs directory
mkdir -p logs
# Add to crontab (run every 5 minutes)
crontab -e
# Paste: */5 * * * * cd /Users/tdyar/ws/FHIR-AI-Hackathon-Kit && /usr/bin/python3 src/setup/fhir_graphrag_setup.py --mode=sync >> logs/kg_sync.log 2>&1
```
See `docs/kg-auto-sync-setup.md` for systemd (Linux) and launchd (macOS) alternatives.
---
# NEW TASK: NVIDIA NIM Multimodal Integration
## Goal
Integrate NVIDIA NIM for multimodal FHIR data processing with separate embeddings for text and medical images
## Research Complete ā
### Key Findings: FHIR Image Storage
**Current Database Status**:
- 2,739 total FHIR resources
- 51 DocumentReference resources (clinical notes, text only)
- 107 DiagnosticReport resources
- **0 ImagingStudy resources** (no DICOM imaging data)
- **0 Media resources** (no medical images)
**FHIR Image Storage Patterns**:
1. **ImagingStudy**: DICOM study metadata with DICOMweb endpoints (WADO-RS, QIDO-RS, STOW-RS)
2. **Media/DocumentReference**: Medical images as Binary resources or external URLs
3. **Binary**: Raw image data (DICOM, JPEG, PNG) with base64 encoding or external storage
4. **DICOMweb Integration**: RESTful access to PACS imaging archives
### Test Dataset Options
**Current Dataset**: Too small for scalability testing (51 documents, 2,739 resources)
**Large-Scale Options**:
1. **Synthea** (Synthetic Patient Generator)
- Can generate **millions of synthetic patients**
- FHIR R4 export, multiple formats
- Pre-generated: 1 million patient dataset (21 GB)
- Custom generation: 10K-50K patients recommended
- **Limitation**: No native imaging support
2. **MIMIC-IV on FHIR** (Real Clinical Data)
- **315,000 patients**, 5.84 million FHIR resources
- Demo: 100 patients, 915,000 resources
- De-identified ICU data from Beth Israel Deaconess
- NDJSON format, PhysioNet repository
3. **MIMIC-CXR** (Medical Imaging)
- **377,110 chest X-rays** from 227,835 studies
- DICOM format with radiology reports
- Real clinical images from 2011-2016
- Pairs with MIMIC-IV for complete clinical context
4. **Hybrid Approach** (Recommended)
- **Synthea**: 10,000-50,000 synthetic patients (FHIR structured data)
- **MIMIC-CXR**: 500-2,000 radiographic studies (authentic medical images)
- **Integration**: Link imaging to synthetic patients via ImagingStudy resources
- **Scale**: ~20-100 GB FHIR data + 50-500 GB images
### NVIDIA NIM Architecture for Multimodal
**Text Embeddings**:
- **NV-EmbedQA-E5-v5**: 1024-dimensional, optimized for Q&A retrieval
- **NV-EmbedQA-Mistral7B-v2**: 4096-dimensional, 7B params for complex medical domains
- Replace current SentenceTransformer (384-dim)
**Vision Embeddings**:
- **Nemotron Nano 12B v2 VL**: Multi-image understanding, OCR, medical document processing
- **Llama 3.2 Vision**: 11B/90B variants for image reasoning and radiology report generation
- Process DICOM, JPEG, PNG from FHIR Binary/Media resources
**Integration Pattern**:
```
FHIR Resources
āāā DocumentReference (clinical notes)
ā āāā NIM Text Embeddings ā VectorSearch.FHIRTextVectors (1024-dim)
ā
āāā ImagingStudy/Media (medical images)
ā āāā NIM Vision Embeddings ā VectorSearch.FHIRImageVectors (??-dim)
ā
āāā Cross-Modal Query Fusion
āāā RRF(text_results, image_results, graph_results)
```
## Next Steps
### Phase 1: Test Dataset Generation (Priority P0)
- [ ] Download Synthea 1M patient dataset OR generate 10K custom patients
- [ ] Download MIMIC-CXR sample (100-500 chest X-rays)
- [ ] Create ImagingStudy FHIR resources linking images to patients
- [ ] Load into IRIS FHIR repository
- [ ] Verify: 10K+ patients, 500+ imaging studies
### Phase 2: Multimodal Architecture (Priority P0)
- [ ] Design vector table schema for text vs. image embeddings
- [ ] Create modality detection layer (resource type ā embedding model routing)
- [ ] Define cross-modal fusion strategy (extend RRF to handle image results)
### Phase 3: NIM Text Integration (Priority P1)
- [ ] Set up NVIDIA NIM API credentials
- [ ] Replace SentenceTransformer with NV-EmbedQA-E5-v5
- [ ] Re-vectorize existing 51 DocumentReferences
- [ ] Test query performance (1024-dim vs 384-dim)
### Phase 4: NIM Vision Integration (Priority P1)
- [ ] Implement DICOM/image extraction from FHIR Binary resources
- [ ] Integrate Nemotron Nano VL for image embeddings
- [ ] Create VectorSearch.FHIRImageVectors table
- [ ] Vectorize medical images
### Phase 5: Cross-Modal Query (Priority P1)
- [ ] Implement multimodal query interface (text query ā text + image results)
- [ ] Extend RRF fusion for text + image + graph modalities
- [ ] Performance benchmarking with 10K+ dataset
## Status: Research Complete, Ready for Implementation ā
---
# AWS EC2 Deployment Status
## Instance Information
- **Instance ID**: i-0432eba10b98c4949
- **Public IP**: 3.84.250.46
- **Instance Type**: g5.xlarge (NVIDIA A10G GPU)
- **Region**: us-east-1
- **OS**: Ubuntu 24.04 LTS
## Deployment Progress ā
### Phase 1: Infrastructure Setup ā
COMPLETE
- ā
EC2 instance provisioned and running
- ā
GPU drivers installed (NVIDIA 535, CUDA 12.2)
- ā
Docker configured with GPU support
- ā
SSH access configured with key-based authentication
### Phase 2: IRIS Vector Database ā
COMPLETE
- ā
InterSystems IRIS Community Edition deployed (latest tag)
- ā
Container: `iris-vector-db` running on ports 1972 (SQL) and 52773 (Web)
- ā
Python package: `intersystems-irispython` installed (correct package name in constitution)
- ā
DEMO namespace created via `CREATE SCHEMA` command
- ā
Vector tables created in SQLUser schema:
- `SQLUser.ClinicalNoteVectors` - Text embeddings with VECTOR(DOUBLE, 1024)
- `SQLUser.MedicalImageVectors` - Image embeddings with VECTOR(DOUBLE, 1024)
- ā
Indexes created on PatientID, DocumentType, StudyType fields
- ā
Python connectivity working from %SYS namespace
**Key Learning**: IRIS SQL tables are created in SQLUser schema by default, not in custom namespaces. The `CREATE SCHEMA` command creates the namespace, then `USE` switches to it, but tables end up in SQLUser. This is the correct IRIS behavior.
**Setup Script**: `scripts/aws/setup-iris-schema.py` (Python-based schema creation)
### Phase 3: NVIDIA NIM Deployment ā
COMPLETE
- ā
NVIDIA NIM API configured and tested
- ā
NV-EmbedQA-E5-v5 verified (1024-dim embeddings)
- ā
API endpoint: `https://integrate.api.nvidia.com/v1/embeddings`
- ā
Using NVIDIA API Cloud (no GPU deployment needed)
- [ ] Deploy Nemotron Nano VL for image embeddings (future)
**Key Decision**: Using NVIDIA API Cloud instead of self-hosted NIM containers
- ā
No GPU required on AWS for embeddings (hosted by NVIDIA)
- ā
Simpler architecture (just API calls)
- ā
Pay-per-use pricing (cost-effective for development)
- ā
Auto-scaling by NVIDIA
- ā
Can switch to self-hosted later if needed
**Test Results**:
```
Test 1: Patient presents with chest pain... ā 1024-dim ā
Test 2: Cardiac catheterization... ā 1024-dim ā
Test 3: Atrial fibrillation management... ā 1024-dim ā
```
### Phase 4: Integration Testing ā
COMPLETE
- ā
End-to-end integration validated
- ā
NVIDIA NIM ā IRIS vector storage pipeline working
- ā
Similarity search with semantic ranking verified
- ā
Query performance: ~2-3 seconds for full pipeline
- ā
**IRISVectorDBClient validated with AWS** (using proper abstractions)
**Integration Test Results**:
```
Query: "chest pain and breathing difficulty"
Results (ranked by semantic similarity):
1. Chest pain + SOB note ā 0.62 similarity ā (best match)
2. Cardiac catheterization ā 0.47 similarity ā (related)
3. Atrial fibrillation ā 0.44 similarity ā (less related)
```
**IRISVectorDBClient Test Results** (December 12, 2025):
```
ā
Connected to AWS IRIS via %SYS namespace
ā
Inserted vectors using clean Python API (no manual TO_VECTOR SQL)
ā
Similarity search with query "chest pain":
1. CLIENT_TEST_001: 0.662 similarity (chest pain description)
2. CLIENT_TEST_002: 0.483 similarity (cardiac catheterization)
ā
Cleanup successful
```
**Key Learning - Namespace Access**:
- Connect to `%SYS` namespace (DEMO has access restrictions)
- Use fully qualified table names: `SQLUser.ClinicalNoteVectors`
- IRISVectorDBClient handles all TO_VECTOR and VECTOR_COSINE syntax internally
**Architecture Validated**:
- NVIDIA NIM API generates semantically meaningful embeddings
- IRIS VECTOR_DOT_PRODUCT ranks results correctly
- Remote AWS connectivity working (MacBook ā AWS EC2)
- Full pipeline: Text ā Embedding (1024-dim) ā Storage ā Search
- **IRISVectorDBClient abstraction works correctly with AWS IRIS**
## Next Steps
### Option A: Migrate Existing GraphRAG to AWS (Recommended)
Since we already have working GraphRAG locally, simply:
1. ā
Use `config/fhir_graphrag_config.aws.yaml` (already created)
2. Run existing scripts pointing to AWS IRIS
3. Create knowledge graph tables on AWS
4. Migrate or re-extract entities
### Option B: Continue AWS Infrastructure Development
1. Deploy NVIDIA NIM LLM for enhanced entity extraction (optional)
2. Set up MIMIC-CXR image dataset
3. Implement medical image vectorization
4. Test multi-modal search (text + image)
### Option C: Production Readiness
1. Implement connection pooling for AWS IRIS
2. Add error handling and retry logic
3. Set up monitoring and logging
4. Create backup and disaster recovery plan
---
## AWS GraphRAG Migration Status (December 13, 2025)
### Goal
Migrate existing local GraphRAG implementation to AWS IRIS
### Status: ā
Phase 1 Complete - FHIR Data Migrated and Vectorized
**Migration Complete**:
- ā
51 DocumentReference resources migrated to AWS IRIS
- ā
Stored in `SQLUser.FHIRDocuments` table
- ā
51 x 1024-dim embeddings generated with NVIDIA Hosted NIM API
- ā
Vectors stored in `SQLUser.ClinicalNoteVectors`
- ā
Model: `nvidia/nv-embedqa-e5-v5` (1024-dimensional)
- ā
Using NVIDIA Cloud API (https://integrate.api.nvidia.com)
**Tables Created**:
- ā
`SQLUser.Entities` (VECTOR DOUBLE 1024) - Ready for knowledge graph
- ā
`SQLUser.EntityRelationships` - Ready for knowledge graph
- ā
`SQLUser.ClinicalNoteVectors` - ā
POPULATED with 51 vectors
- ā
`SQLUser.FHIRDocuments` - ā
POPULATED with 51 FHIR resources
**Configuration Updated**:
- ā
AWS config file with %SYS namespace
- ā
SQLUser schema for all tables
- ā
1024-dimensional vectors (NVIDIA NIM compatible)
- ā
CloudConfiguration API compliance verified
**Vectorization Results**:
```
ā
Total vectors: 51
ā
Model: nvidia/nv-embedqa-e5-v5 (1024-dim)
ā
Sample document types: History and physical note
ā
NVIDIA Cloud API: https://integrate.api.nvidia.com/v1/embeddings
```
**Scripts Created**:
1. `scripts/aws/migrate-fhir-to-aws.py` - Full migration pipeline
2. `scripts/aws/vectorize-migrated-fhir.py` - Standalone vectorization
3. `scripts/aws/test-nvidia-hosted-nim.py` - API validation
4. `scripts/aws/deploy-nim-embedding.sh` - Deployment helper
**Next Steps**:
- [ ] Deploy knowledge graph tables to AWS using iris-vector-rag v0.5.4
- [ ] Extract entities from 51 migrated documents
- [ ] Test multi-modal search on AWS deployment
- [ ] Benchmark AWS vs. local performance
---
## š iris-vector-rag Update (December 12, 2025)
### Major Improvements Discovered in iris-vector-rag 0.5.2
After reinstalling iris-vector-rag, we discovered that **the iris-vector-rag team has addressed our critical pain points!**
**ā
RESOLVED Issues** (3 of 6 critical/high priority):
1. **Environment Variable Support** š
- Full support for `RAG_` prefixed environment variables
- Example: `RAG_DATABASE__IRIS__HOST="3.84.250.46"`
- No more hardcoded connection settings!
2. **Configurable Vector Dimensions** š
- `vector_dimension: 1024` now configurable in YAML
- Supports 384, 768, 1024, 1536, 3072, 4096+
- Can use NVIDIA NIM, OpenAI, any modern embedding model
3. **Configuration Manager** š
- Production-ready ConfigurationManager
- YAML config + env var overrides
- Type casting and validation
- Nested key support
**š” Partially Resolved** (2 issues):
- Namespace configuration (works, needs docs)
- Table name qualification (works, needs testing)
**ā Still Pending** (1 issue):
- Data migration utilities (future work)
**š New Features Found**:
- IRIS EMBEDDING support (auto-vectorization)
- HNSW index configuration
- Schema Manager (automatic table creation)
- Entity extraction pipeline
**Impact**: iris-vector-rag is now **production-ready for cloud deployments**!
**Next Steps**:
1. Test iris-vector-rag with AWS configuration
2. Consider migrating from IRISVectorDBClient to iris-vector-rag
3. Contribute AWS deployment docs to project
**Documentation Created**:
- `IRIS_VECTOR_RAG_IMPROVEMENTS_VERIFIED.md` (comprehensive analysis)
- Updated `IRIS_VECTOR_RAG_PAIN_POINTS.md` with resolved status
---
**Overall Project Status**: ā
Ready for iris-vector-rag adoption on AWS!
---
# AWS DEPLOYMENT: GraphRAG Knowledge Graph ā
## Goal
Deploy GraphRAG knowledge graph infrastructure on AWS EC2 with NVIDIA NIM embeddings
## Status: **COMPLETE** ā
### AWS Environment
- **Instance**: g5.xlarge (NVIDIA A10G GPU)
- **Region**: us-east-1
- **IP**: 3.84.250.46
- **Database**: InterSystems IRIS Community Edition
- **Namespace**: %SYS / SQLUser
### Data Migrated
- ā
51 FHIR DocumentReference resources
- ā
51 x 1024-dimensional embeddings (NVIDIA NIM NV-EmbedQA-E5-v5)
- ā
83 medical entities extracted
- ā
540 entity relationships mapped
### Knowledge Graph Tables (AWS)
#### SQLUser.Entities
- **Count**: 83 entities
- **Types**: TEMPORAL (43), SYMPTOM (21), BODY_PART (10), CONDITION (6), MEDICATION (2), PROCEDURE (1)
- **Embeddings**: 1024-dimensional VECTOR(DOUBLE, 1024)
- **Storage**: ~160 KB
#### SQLUser.EntityRelationships
- **Count**: 540 relationships
- **Type**: CO_OCCURS_WITH (entity co-occurrence in documents)
- **Schema**: SourceEntityID, TargetEntityID (bigint references)
- **Storage**: ~40 KB
### Issues Resolved
1. **iris-vector-rag GraphRAG Bug** ā
FIXED
- Problem: `UnboundLocalError: cannot access local variable 'time'`
- Root Cause: Duplicate `import time` statement causing Python scoping issue
- Solution: Removed duplicate import from `graphrag.py` line 144
- Status: Fixed in `/Users/tdyar/ws/iris-vector-rag-private`
- Documentation: `IRIS_VECTOR_RAG_GRAPHRAG_BUG_RESOLUTION.md`
2. **Entity Relationship Schema Mismatch** ā
FIXED
- Problem: Table expected entity IDs (bigint) but script inserted entity text (varchar)
- Solution: Build entity ID mapping, use IDs for relationship insertion
- File: `scripts/aws/extract-entities-aws.py` (lines 334-380)
3. **Missing ResourceID Field** ā
FIXED
- Problem: EntityRelationships table requires ResourceID
- Solution: Track source document ID with each relationship
- Status: All 540 relationships include ResourceID
### Scripts
#### Entity Extraction (Direct SQL)
**File**: `scripts/aws/extract-entities-aws.py`
- Regex-based entity extraction
- NVIDIA Hosted NIM embeddings
- Batch insertion with ID mapping
- **Status**: ā
Successfully populated knowledge graph
#### Pipeline Approach (iris-vector-rag)
**File**: `scripts/aws/build-knowledge-graph-aws.py`
- ConfigurationManager abstraction
- IRISVectorStore integration
- GraphRAGPipeline entity extraction
- **Status**: ā ļø Needs NVIDIA NIM API key configuration
### Next Steps
1. **Configure NVIDIA NIM API**
- Add API key to `config/fhir_graphrag_config.aws.yaml`
- Test iris-vector-rag GraphRAG pipeline
- Verify multi-modal search (vector + text + graph)
2. **Deploy NIM LLM Service** (Optional)
- Install NVIDIA NIM LLM container
- Configure llama-3.1-nemotron-70b-instruct
- Enable answer generation in GraphRAG queries
3. **Performance Testing**
- Benchmark GraphRAG vs vector-only search
- Test graph traversal depth impact
- Measure query latency on AWS
### Documentation
- ā
`AWS_GRAPHRAG_KNOWLEDGE_GRAPH_COMPLETE.md` - Full deployment details
- ā
`IRIS_VECTOR_RAG_GRAPHRAG_BUG_REPORT.md` - Bug documentation
- ā
`IRIS_VECTOR_RAG_GRAPHRAG_BUG_RESOLUTION.md` - Fix documentation
- ā
`config/fhir_graphrag_config.aws.yaml` - AWS configuration
### Verification
```sql
-- Entity count by type
SELECT EntityType, COUNT(*)
FROM SQLUser.Entities
GROUP BY EntityType
ORDER BY COUNT(*) DESC;
-- Relationship count
SELECT COUNT(*)
FROM SQLUser.EntityRelationships;
-- Sample entities
SELECT TOP 5 EntityText, EntityType, Confidence
FROM SQLUser.Entities
ORDER BY Confidence DESC;
```
**Status**: ā
**AWS GRAPHRAG KNOWLEDGE GRAPH OPERATIONAL**