Skip to main content
Glama
workflow-integration.md10.2 kB
# MCP Titan Workflow Integration Guide ## Overview This document describes the complete workflow integration for the MCP Titan tool, enabling seamless integration into any AI agent system for automated software development lifecycle management. ## Core Workflow Components ### 1. Automatic Release PR Creation #### Release Detection ```typescript interface ReleaseConfig { versionBump: "patch" | "minor" | "major"; triggerConditions: { commitCount: number; timeThreshold: string; // e.g., '7d', '14d' featureFlags: string[]; }; channels: { stable: string; beta: string; alpha: string; }; } ``` #### Workflow Triggers - **Commit-based**: Automatically trigger after N commits to main - **Time-based**: Weekly/monthly release cycles - **Feature-based**: When specific feature flags are completed - **Manual**: Via agent command or GitHub webhook #### PR Creation Process 1. **Version Analysis**: Analyze commits since last release using conventional commits 2. **Changelog Generation**: Auto-generate changelog from commit messages 3. **Dependency Updates**: Check for security updates and compatible version bumps 4. **Test Suite Execution**: Run full test suite before PR creation 5. **PR Template Population**: Use intelligent templates based on change type ```typescript interface ReleasePR { title: string; body: string; labels: string[]; assignees: string[]; reviewers: string[]; milestone?: string; metadata: { changeType: "breaking" | "feature" | "fix" | "docs"; affectedComponents: string[]; testCoverage: number; performanceImpact?: string; }; } ``` ### 2. GitHub Issue Management #### Issue Classification System ```typescript interface IssueClassification { type: "bug" | "feature" | "enhancement" | "question" | "documentation"; priority: "critical" | "high" | "medium" | "low"; complexity: "trivial" | "simple" | "moderate" | "complex"; component: string[]; estimatedHours?: number; dependencies?: string[]; } ``` #### Automatic Issue Processing 1. **Content Analysis**: Use NLP to understand issue context 2. **Duplicate Detection**: Check against existing issues using similarity matching 3. **Auto-labeling**: Apply relevant labels based on content analysis 4. **Assignment Logic**: Route to appropriate team members 5. **Template Validation**: Ensure issues follow required format #### Issue Resolution Workflow ```typescript interface IssueResolution { analysisPhase: { rootCauseAnalysis: boolean; reproductionSteps: string[]; affectedVersions: string[]; }; implementationPhase: { branchCreated: boolean; testsWritten: boolean; codeReviewed: boolean; }; validationPhase: { manualTesting: boolean; automatedTesting: boolean; performanceTesting: boolean; }; } ``` ### 3. Feedback Collection and Processing #### Multi-channel Feedback Integration ```typescript interface FeedbackChannels { github: { issues: boolean; discussions: boolean; pullRequests: boolean; }; external: { slack: boolean; discord: boolean; email: boolean; surveys: boolean; }; analytics: { errorTracking: boolean; usageMetrics: boolean; performanceMetrics: boolean; }; } ``` #### Feedback Processing Pipeline 1. **Collection**: Aggregate feedback from all configured channels 2. **Sentiment Analysis**: Classify feedback as positive/negative/neutral 3. **Topic Modeling**: Extract key themes and topics 4. **Prioritization**: Score feedback based on impact and frequency 5. **Action Generation**: Create actionable items from feedback ```typescript interface FeedbackItem { id: string; source: string; timestamp: Date; content: string; sentiment: "positive" | "negative" | "neutral"; topics: string[]; priority: number; actionItems: string[]; metadata: Record<string, any>; } ``` ### 4. Intelligent Labeling System #### Label Taxonomy ```typescript interface LabelTaxonomy { type: { bug: "#d73a49"; feature: "#0075ca"; enhancement: "#a2eeef"; documentation: "#0052cc"; question: "#d876e3"; }; priority: { "priority: critical": "#b60205"; "priority: high": "#d93f0b"; "priority: medium": "#fbca04"; "priority: low": "#0e8a16"; }; component: { "component: core": "#1d76db"; "component: api": "#5319e7"; "component: ui": "#f9d0c4"; "component: docs": "#c2e0c6"; }; status: { "status: triage": "#fbca04"; "status: in-progress": "#0052cc"; "status: blocked": "#d73a49"; "status: ready-for-review": "#0075ca"; }; } ``` #### Auto-labeling Rules ```typescript interface LabelingRules { textPatterns: { pattern: RegExp; labels: string[]; confidence: number; }[]; filePatterns: { pattern: string; labels: string[]; }[]; userRoles: { role: string; defaultLabels: string[]; }[]; contextual: { condition: string; labels: string[]; }[]; } ``` ### 5. Linting and Code Quality #### Multi-level Linting Strategy ```typescript interface LintingConfig { levels: { syntax: { enabled: boolean; tools: string[]; failOnError: boolean; }; style: { enabled: boolean; config: string; autoFix: boolean; }; security: { enabled: boolean; tools: string[]; severity: "error" | "warning"; }; performance: { enabled: boolean; thresholds: Record<string, number>; }; }; integrations: { preCommit: boolean; prChecks: boolean; cicd: boolean; }; } ``` #### Quality Gates ```typescript interface QualityGates { coverage: { minimum: number; delta: number; }; complexity: { cyclomatic: number; cognitive: number; }; duplication: { percentage: number; }; security: { vulnerabilities: number; licenses: string[]; }; } ``` ## Agent Integration Points ### 1. Memory-Enhanced Decision Making The MCP Titan tool maintains context across interactions to improve decision quality: ```typescript interface AgentMemory { projectContext: { codebase: string; architecture: string; conventions: Record<string, any>; }; workflowHistory: { successfulPatterns: Pattern[]; failedAttempts: FailureAnalysis[]; userPreferences: UserPreferences; }; learningMetrics: { accuracyScore: number; adaptationRate: number; contextRetention: number; }; } ``` ### 2. Workflow Orchestration ```typescript interface WorkflowOrchestrator { triggers: { webhooks: WebhookConfig[]; schedules: ScheduleConfig[]; manual: ManualTriggerConfig[]; }; pipelines: { parallel: Pipeline[]; sequential: Pipeline[]; conditional: ConditionalPipeline[]; }; monitoring: { healthChecks: HealthCheck[]; metrics: MetricConfig[]; alerts: AlertConfig[]; }; } ``` ### 3. Integration APIs #### GitHub Integration ```typescript interface GitHubIntegration { authentication: { token: string; app: GitHubApp; }; permissions: { repositories: string[]; scopes: string[]; }; webhooks: { events: string[]; secret: string; url: string; }; } ``` #### Notification Systems ```typescript interface NotificationSystem { channels: { slack: SlackConfig; email: EmailConfig; webhook: WebhookConfig; }; templates: { success: string; failure: string; warning: string; }; routing: { rules: RoutingRule[]; fallback: string; }; } ``` ## Implementation Strategy ### Phase 1: Core Workflow Components (Week 1) 1. Set up GitHub API integration 2. Implement basic issue classification 3. Create release PR automation 4. Add fundamental linting pipeline ### Phase 2: Intelligence Layer (Week 2) 1. Integrate MCP Titan memory system 2. Add sentiment analysis for feedback 3. Implement smart labeling rules 4. Create learning feedback loops ### Phase 3: Advanced Features (Week 3) 1. Multi-channel feedback integration 2. Advanced quality gates 3. Performance monitoring 4. Predictive analytics ### Phase 4: Optimization (Week 4) 1. Performance tuning 2. Error handling improvements 3. User experience enhancements 4. Documentation and testing ## Configuration Schema ```typescript interface WorkflowConfig { repository: { owner: string; name: string; branch: string; }; features: { autoRelease: ReleaseConfig; issueManagement: IssueConfig; feedback: FeedbackConfig; labeling: LabelConfig; linting: LintConfig; }; integrations: { github: GitHubIntegration; notifications: NotificationSystem; analytics: AnalyticsConfig; }; memory: { titanConfig: TitanMemoryConfig; persistence: PersistenceConfig; }; } ``` ## Success Metrics ### Automation Metrics - **Release Frequency**: Target 2x increase in release cadence - **Issue Resolution Time**: Target 50% reduction in average resolution time - **Code Quality**: Maintain >95% quality gate pass rate - **Feedback Response**: Target <24h response time to feedback ### Learning Metrics - **Memory Retention**: >90% context accuracy across sessions - **Prediction Accuracy**: >85% accuracy in workflow predictions - **Adaptation Rate**: <1 week to adapt to new patterns - **User Satisfaction**: >4.5/5 in agent interaction quality ## Error Handling and Recovery ### Failure Modes 1. **API Rate Limits**: Exponential backoff with jitter 2. **Network Issues**: Circuit breaker pattern with retries 3. **Memory Corruption**: Automatic checkpoint recovery 4. **Permission Errors**: Graceful degradation with notifications ### Recovery Strategies ```typescript interface RecoveryStrategy { detection: { healthChecks: HealthCheck[]; anomalyDetection: boolean; }; response: { automated: AutomatedResponse[]; manual: ManualIntervention[]; }; prevention: { proactiveMonitoring: boolean; predictiveAnalysis: boolean; }; } ``` This workflow integration provides a comprehensive framework for any agent to leverage the MCP Titan tool for complete software development lifecycle automation while maintaining memory and learning capabilities across interactions.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/henryhawke/mcp-titan'

If you have feedback or need assistance with the MCP directory API, please join our Discord server