Skip to main content
Glama
roadmap.md53 kB
## 1. Architecture Enhancements ### Attention Mechanism Upgrades - **Implement Rotary Position Embeddings (RoPE)** to replace the current positional encoding - **Add Multi-Query Attention** which is more efficient than full multi-head attention while maintaining most benefits - **Integrate KV caching** for improved inference efficiency ### Memory Architecture - **Hierarchical memory structure** with different retrieval speeds (working, short-term, long-term) - **Implement an episodic/semantic memory distinction** for better contextual retrieval - **Add a meta-learning component** for dynamic memory management policy optimization ## 2. Efficiency Improvements ### Tensor Management - **Replace manual tensor management** with TensorFlow.js's newer memory optimization APIs - **Implement batched matrix operations** to reduce computation overhead - **Add gradient checkpointing** to reduce memory footprint during training ### Tokenization and Encoding - **Replace character-level tokenization** with subword tokenization (BPE or SentencePiece) - **Add tokenizer caching** to avoid redundant encoding operations - **Implement parallel processing** for encoding multiple inputs ## 3. Enhanced Learning Algorithms ### Advanced Training Methods - **Implement contrastive learning** for improved similarity calculations - **Add differential privacy components** for secure memory management - **Integrate curriculum learning** for memory importance prioritization ### Memory Retrieval Upgrades - **Implement approximate nearest neighbors** (HNSW or FAISS-like structures) for faster retrieval - **Add chunking strategies** for more efficient context handling - **Implement a hybrid retrieval system** combining exact and approximate methods for speed/accuracy tradeoffs ## 4. Modern Neural Components ### Advanced Components - **Add Gated Linear Units (GLU)** for improved gradient flow - **Implement SwiGLU activation** which has shown better performance in transformer models - **Add layer normalization before attention** (Pre-LN architecture) for training stability - **Implement adaptive computation time** to dynamically adjust computational depth ### Memory Pruning and Management - **Implement a more sophisticated pruning strategy** based on information gain rather than simple recency/frequency - **Add a compaction mechanism** for similar memories - **Implement memory distillation** to extract essential information from related memories ## 5. Production Optimizations ### Performance - **Add quantization support** (INT8/INT4) for memory vectors - **Implement model splitting and parallelization** - **Add JIT compilation** support for critical path operations - **Implement sparse attention patterns** to reduce computation ### Integration and Observability - **Add built-in telemetry** for performance monitoring - **Improve error handling and recovery** with more sophisticated strategies - **Implement progressive loading** of memory for faster startup These enhancements would significantly improve the model's capabilities while making it more efficient. The combination of modern attention mechanisms, hierarchical memory, and optimized tensor operations would create a much more powerful and usable memory system. Would you like me to focus on implementing any specific improvements from this list, or would you prefer an alternative approach to enhancing the model? I'll start implementing the most impactful improvements to the TitanMemoryModel in a logical order. Let's begin with the foundational architectural enhancements that will provide the greatest benefits. ## 1. Implementing Rotary Position Embeddings (RoPE) First, let's replace the current positional encoding with Rotary Position Embeddings, which provide better relative position information and have become standard in modern transformer architectures: ```typescript private applyRotaryPositionEmbeddings(input: tf.Tensor2D): tf.Tensor2D { return tf.tidy(() => { const batchSize = input.shape[0]; const seqLength = input.shape[1]; const hiddenDim = this.config.hiddenDim; const halfDim = Math.floor(hiddenDim / 2); // Create position indices const positions = tf.range(0, seqLength).expandDims(1); // Create frequency bands const freqs = tf.exp( tf.mul( tf.range(0, halfDim).cast('float32'), tf.scalar(-(Math.log(10000.0) / halfDim)) ) ); // Calculate theta const theta = tf.matMul(positions, freqs.expandDims(0)); // Create rotation matrices const cosTheta = tf.cos(theta); const sinTheta = tf.sin(theta); // Reshape input for rotation const x1 = tf.reshape(input, [batchSize, seqLength, -1, 2, halfDim]); const x2 = tf.reshape( tf.reverse(input, [-1]), [batchSize, seqLength, -1, 2, halfDim] ); // Apply rotation const rotated = tf.add( tf.mul(x1, cosTheta.expandDims(2).expandDims(3)), tf.mul(x2, sinTheta.expandDims(2).expandDims(3)) ); // Reshape back to original dimensions return tf.reshape(rotated, [batchSize, seqLength, hiddenDim]); }); } ``` ## 2. Implementing Multi-Query Attention Now, let's enhance the attention mechanism with Multi-Query Attention, which is more efficient than full multi-head attention: ```typescript private computeMultiQueryAttention(query: tf.Tensor2D): IAttentionBlock { return tf.tidy(() => { // Project query for each head const queryHeads = tf.split( tf.matMul( query, tf.variable(tf.randomNormal([this.config.hiddenDim, this.config.hiddenDim * this.config.numHeads])) ), this.config.numHeads, -1 ); // Project keys and values (shared across heads) const keys = tf.matMul( this.memoryState.shortTerm, tf.variable(tf.randomNormal([this.config.memoryDim, this.config.hiddenDim])) ); const values = tf.matMul( this.memoryState.shortTerm, tf.variable(tf.randomNormal([this.config.memoryDim, this.config.hiddenDim])) ); // Compute attention for each head const headOutputs = queryHeads.map(qHead => { const scores = tf.softmax( tf.div( tf.matMul(qHead, keys.transpose()), tf.sqrt(tf.scalar(this.config.hiddenDim)) ) ); return tf.matMul(scores, values); }); // Concatenate head outputs const attended = tf.concat(headOutputs, -1); // Project back to original dimension const output = tf.matMul( attended, tf.variable(tf.randomNormal([this.config.hiddenDim * this.config.numHeads, this.config.hiddenDim])) ); return { keys, values: output, scores: tf.concat(headOutputs.map(h => tf.mean(h, -1).expandDims(-1)), -1) }; }); } ``` ## 3. Implementing Hierarchical Memory Structure Let's add a hierarchical memory structure with different retrieval speeds: ```typescript // Add to IMemoryState interface interface IHierarchicalMemoryState extends IMemoryState { workingMemory: tf.Tensor2D; // Fast access, small capacity shortTermMemory: tf.Tensor2D; // Medium access, medium capacity longTermMemory: tf.Tensor2D; // Slow access, large capacity workingAccessCounts: tf.Tensor1D; shortTermAccessCounts: tf.Tensor1D; longTermAccessCounts: tf.Tensor1D; } private initializeHierarchicalMemoryState(): void { tf.engine().startScope(); try { const initializer = tf.initializers.glorotNormal({}); // Initialize with different capacities const workingMemorySize = Math.floor(this.config.memorySlots * 0.1); // 10% const shortTermMemorySize = Math.floor(this.config.memorySlots * 0.3); // 30% const longTermMemorySize = this.config.memorySlots - workingMemorySize - shortTermMemorySize; // 60% const workingMemory = tf.keep(initializer.apply([workingMemorySize, this.config.memoryDim]) as tf.Tensor2D); const shortTermMemory = tf.keep(initializer.apply([shortTermMemorySize, this.config.memoryDim]) as tf.Tensor2D); const longTermMemory = tf.keep(initializer.apply([longTermMemorySize, this.config.memoryDim]) as tf.Tensor2D); // Clean up old state if it exists if (this.memoryState) { Object.values(this.memoryState).forEach(tensor => { if (tensor && !tensor.isDisposed) { tensor.dispose(); } }); } // Create hierarchical memory state this.memoryState = { shortTerm: tf.keep(tf.concat([workingMemory, shortTermMemory], 0)), longTerm: tf.keep(longTermMemory), meta: tf.keep(tf.zeros([this.config.memorySlots, this.config.memoryDim])), timestamps: tf.keep(tf.zeros([this.config.memorySlots])), accessCounts: tf.keep(tf.zeros([this.config.memorySlots])), surpriseHistory: tf.keep(tf.zeros([this.config.memorySlots])), // Hierarchical components workingMemory: workingMemory, shortTermMemory: shortTermMemory, longTermMemory: longTermMemory, workingAccessCounts: tf.keep(tf.zeros([workingMemorySize])), shortTermAccessCounts: tf.keep(tf.zeros([shortTermMemorySize])), longTermAccessCounts: tf.keep(tf.zeros([longTermMemorySize])) } as IHierarchicalMemoryState; } catch (error) { console.error('Error initializing hierarchical memory state:', error); throw error; } finally { tf.engine().endScope(); } } ``` ## 4. Implementing Subword Tokenization Let's replace the character-level tokenization with a more efficient subword tokenization approach: ```typescript // Add BPE tokenizer implementation class BPETokenizer { private merges: Map<string, number> = new Map(); private vocab: Map<string, number> = new Map(); private reverseVocab: Map<number, string> = new Map(); private specialTokens: Map<string, number> = new Map(); constructor() { // Initialize with special tokens this.specialTokens.set('[PAD]', 0); this.specialTokens.set('[UNK]', 1); this.specialTokens.set('[CLS]', 2); this.specialTokens.set('[SEP]', 3); // Add special tokens to vocabulary this.specialTokens.forEach((id, token) => { this.vocab.set(token, id); this.reverseVocab.set(id, token); }); } public async loadFromFile(vocabPath: string, mergesPath: string): Promise<void> { try { // Load vocabulary const vocabData = await fs.readFile(vocabPath, 'utf-8'); const vocabLines = vocabData.split('\n').filter(line => line.trim().length > 0); vocabLines.forEach((line, i) => { const token = line.trim(); const id = i + this.specialTokens.size; this.vocab.set(token, id); this.reverseVocab.set(id, token); }); // Load merges const mergesData = await fs.readFile(mergesPath, 'utf-8'); const mergeLines = mergesData.split('\n').filter(line => line.trim().length > 0); mergeLines.forEach((line, i) => { const [first, second] = line.trim().split(' '); this.merges.set(`${first} ${second}`, i); }); } catch (error) { console.error('Error loading tokenizer files:', error); throw error; } } public encode(text: string): number[] { // Tokenize text using BPE algorithm let tokens = Array.from(text); let changes = true; while (changes) { changes = false; let pairs: [string, string, number][] = []; for (let i = 0; i < tokens.length - 1; i++) { const pair = `${tokens[i]} ${tokens[i + 1]}`; const rank = this.merges.get(pair); if (rank !== undefined) { pairs.push([tokens[i], tokens[i + 1], rank]); } } if (pairs.length === 0) break; // Find the pair with the lowest rank (highest priority) pairs.sort((a, b) => a[2] - b[2]); const [first, second] = [pairs[0][0], pairs[0][1]]; // Merge the pair const newTokens: string[] = []; for (let i = 0; i < tokens.length; i++) { if (i < tokens.length - 1 && tokens[i] === first && tokens[i + 1] === second) { newTokens.push(first + second); i++; changes = true; } else { newTokens.push(tokens[i]); } } tokens = newTokens; } // Convert tokens to IDs return tokens.map(token => this.vocab.get(token) || this.vocab.get('[UNK]')!); } public decode(ids: number[]): string { return ids.map(id => this.reverseVocab.get(id) || '[UNK]').join(''); } } // Update the encodeText method to use the BPE tokenizer private tokenizer: BPETokenizer = new BPETokenizer(); public async encodeText(text: string): Promise<tf.Tensor1D> { return tf.tidy(() => { // Tokenize text using BPE const tokenIds = this.tokenizer.encode(text); // Pad or truncate sequence const paddedIds = this.padSequence(tokenIds); // Create tensor and apply embedding const inputTensor = tf.tensor2d([paddedIds], [1, this.config.maxSequenceLength]); let encoding = this.applyRotaryPositionEmbeddings(inputTensor); // Process through transformer stack for (const layer of this.transformerStack) { encoding = layer.apply(encoding) as tf.Tensor2D; } // Mean pooling over sequence length return tf.mean(encoding, 1).squeeze() as tf.Tensor1D; }); } ``` ## 5. Implementing Approximate Nearest Neighbors for Memory Retrieval Let's add a more efficient retrieval mechanism using an approximate nearest neighbors approach: ```typescript // Add HNSW-inspired nearest neighbor search class HNSWMemoryIndex { private vectors: tf.Tensor2D; private maxConnections: number = 16; private entryPoint: number = 0; private graph: Map<number, Set<number>> = new Map(); constructor(vectors: tf.Tensor2D, maxConnections: number = 16) { this.vectors = vectors; this.maxConnections = maxConnections; this.buildIndex(); } private buildIndex(): void { const numVectors = this.vectors.shape[0]; // Initialize graph for (let i = 0; i < numVectors; i++) { this.graph.set(i, new Set<number>()); } // Build connections (simplified HNSW approach) for (let i = 1; i < numVectors; i++) { const neighbors = this.searchLayer(i, this.maxConnections); // Add bidirectional connections neighbors.forEach(neighbor => { this.graph.get(i)!.add(neighbor); this.graph.get(neighbor)!.add(i); // Prune connections if needed if (this.graph.get(neighbor)!.size > this.maxConnections) { this.pruneConnections(neighbor); } }); if (this.graph.get(i)!.size > this.maxConnections) { this.pruneConnections(i); } } } private searchLayer(queryIndex: number, k: number): number[] { const visited = new Set<number>(); const candidates = new Map<number, number>(); // node index -> distance // Start from entry point let current = this.entryPoint; let currentDistance = this.computeDistance(queryIndex, current); candidates.set(current, currentDistance); // Greedy search while (true) { visited.add(current); // Explore neighbors this.graph.get(current)!.forEach(neighbor => { if (!visited.has(neighbor)) { const distance = this.computeDistance(queryIndex, neighbor); candidates.set(neighbor, distance); } }); // Find best unvisited candidate let bestDistance = Infinity; let bestNode = -1; candidates.forEach((distance, node) => { if (!visited.has(node) && distance < bestDistance) { bestDistance = distance; bestNode = node; } }); // If no improvement, break if (bestNode === -1 || bestDistance >= currentDistance) { break; } current = bestNode; currentDistance = bestDistance; } // Return k nearest neighbors return Array.from(candidates.entries()) .sort((a, b) => a[1] - b[1]) .slice(0, k) .map(entry => entry[0]); } private computeDistance(i: number, j: number): number { return tf.tidy(() => { const vecI = this.vectors.slice([i, 0], [1, -1]); const vecJ = this.vectors.slice([j, 0], [1, -1]); return tf.sub(vecI, vecJ).square().sum().sqrt().dataSync()[0]; }); } private pruneConnections(nodeIndex: number): void { const connections = Array.from(this.graph.get(nodeIndex)!); const distances = connections.map(conn => this.computeDistance(nodeIndex, conn)); // Sort by distance const sortedIndices = distances .map((dist, i) => ({ dist, index: i })) .sort((a, b) => a.dist - b.dist) .map(item => item.index); // Keep only the closest connections const newConnections = new Set<number>(); sortedIndices.slice(0, this.maxConnections).forEach(i => { newConnections.add(connections[i]); }); this.graph.set(nodeIndex, newConnections); } public search(query: tf.Tensor1D, k: number): number[] { // Convert query to vector if needed const queryVector = query.reshape([1, -1]); // Find approximate nearest neighbors const candidates = new Map<number, number>(); let current = this.entryPoint; // Compute distance to entry point const entryDistance = tf.tidy(() => { return tf.sub(queryVector, this.vectors.slice([current, 0], [1, -1])) .square().sum().sqrt().dataSync()[0]; }); candidates.set(current, entryDistance); const visited = new Set<number>(); // Greedy search while (true) { visited.add(current); // Explore neighbors this.graph.get(current)!.forEach(neighbor => { if (!visited.has(neighbor)) { const distance = tf.tidy(() => { return tf.sub(queryVector, this.vectors.slice([neighbor, 0], [1, -1])) .square().sum().sqrt().dataSync()[0]; }); candidates.set(neighbor, distance); } }); // Find best unvisited candidate let bestDistance = Infinity; let bestNode = -1; candidates.forEach((distance, node) => { if (!visited.has(node) && distance < bestDistance) { bestDistance = distance; bestNode = node; } }); // If no improvement, break if (bestNode === -1 || candidates.get(current)! <= bestDistance) { break; } current = bestNode; } // Return k nearest neighbors return Array.from(candidates.entries()) .sort((a, b) => a[1] - b[1]) .slice(0, k) .map(entry => entry[0]); } } // Update memory retrieval to use approximate nearest neighbors public async recallMemory(query: string, topK = 5): Promise<tf.Tensor2D[]> { const queryEmbedding = await this.encodeText(query); // Create or update index if needed if (!this.memoryIndex || this.memoryIndex.needsRebuild) { this.memoryIndex = new HNSWMemoryIndex(this.memoryState.shortTerm, 16); } // Find nearest neighbors const indices = this.memoryIndex.search(queryEmbedding, topK); // Return memory vectors return indices.map(i => this.memoryState.shortTerm.slice([i, 0], [1, -1]) as tf.Tensor2D ); } ``` ## 6. Implementing Gated Linear Units (GLU) Let's enhance the transformer layers with Gated Linear Units for improved gradient flow: ```typescript private createGLULayer(inputDim: number, outputDim: number): tf.LayersModel { const input = tf.input({shape: [inputDim]}); // Linear projections const linearPath = tf.layers.dense({ units: outputDim, activation: 'linear', kernelInitializer: 'glorotNormal', biasInitializer: 'zeros' }).apply(input); const gatePath = tf.layers.dense({ units: outputDim, activation: 'sigmoid', kernelInitializer: 'glorotNormal', biasInitializer: 'zeros' }).apply(input); // Element-wise multiplication const gated = tf.layers.multiply().apply([linearPath, gatePath]); return tf.model({inputs: input, outputs: gated}); } private createSwiGLULayer(inputDim: number, outputDim: number): tf.LayersModel { const input = tf.input({shape: [inputDim]}); // Linear projections const linearPath = tf.layers.dense({ units: outputDim, activation: 'linear', kernelInitializer: 'glorotNormal', biasInitializer: 'zeros' }).apply(input); const gatePath = tf.layers.dense({ units: outputDim, activation: 'swish', // Swish activation (x * sigmoid(x)) kernelInitializer: 'glorotNormal', biasInitializer: 'zeros' }).apply(input); // Element-wise multiplication const gated = tf.layers.multiply().apply([linearPath, gatePath]); return tf.model({inputs: input, outputs: gated}); } // Update transformer stack initialization to use GLU/SwiGLU private initializeComponents(): void { // Initialize transformer stack with GLU/SwiGLU this.transformerStack = []; for (let i = 0; i < this.config.transformerLayers; i++) { // Create Pre-LN transformer block const input = tf.input({shape: [this.config.inputDim]}); // Layer normalization before attention (Pre-LN architecture) const normalized = tf.layers.layerNormalization().apply(input); // Self-attention const attention = this.createMultiHeadAttention( this.config.inputDim, this.config.numHeads ).apply(normalized); // Residual connection const attentionResidual = tf.layers.add().apply([input, attention]); // Layer normalization before FFN const normalizedResidual = tf.layers.layerNormalization().apply(attentionResidual); // SwiGLU feedforward const swiGLU = this.createSwiGLULayer( this.config.inputDim, this.config.ffDimension ).apply(normalizedResidual); // Project back to input dimension const projected = tf.layers.dense({ units: this.config.inputDim, activation: 'linear', kernelInitializer: 'glorotNormal', biasInitializer: 'zeros' }).apply(swiGLU); // Dropout const dropped = tf.layers.dropout({ rate: this.config.dropoutRate }).apply(projected); // Final residual connection const output = tf.layers.add().apply([attentionResidual, dropped]); // Create model const layer = tf.model({inputs: input, outputs: output}); this.transformerStack.push(layer); } // Initialize other components // ... (rest of the initialization code) } private createMultiHeadAttention(dim: number, numHeads: number): tf.LayersModel { const input = tf.input({shape: [dim]}); // Project query, key, value const query = tf.layers.dense({ units: dim, activation: 'linear', kernelInitializer: 'glorotNormal', biasInitializer: 'zeros' }).apply(input); const key = tf.layers.dense({ units: dim, activation: 'linear', kernelInitializer: 'glorotNormal', biasInitializer: 'zeros' }).apply(input); const value = tf.layers.dense({ units: dim, activation: 'linear', kernelInitializer: 'glorotNormal', biasInitializer: 'zeros' }).apply(input); // Split heads const headDim = dim / numHeads; // Reshape to [batch, numHeads, headDim] const reshapeLayer = tf.layers.reshape({targetShape: [numHeads, headDim]}); const queryHeads = reshapeLayer.apply(query); const keyHeads = reshapeLayer.apply(key); const valueHeads = reshapeLayer.apply(value); // Scaled dot-product attention const scores = tf.layers.dot({axes: -1}).apply([queryHeads, keyHeads]); const scaledScores = tf.layers.lambda({ function: (x: any) => tf.div(x, Math.sqrt(headDim)) }).apply(scores); const attentionWeights = tf.layers.softmax().apply(scaledScores); const attended = tf.layers.dot({axes: [2, 1]}).apply([attentionWeights, valueHeads]); // Reshape back const reshapedOutput = tf.layers.reshape({targetShape: [dim]}).apply(attended); // Final projection const output = tf.layers.dense({ units: dim, activation: 'linear', kernelInitializer: 'glorotNormal', biasInitializer: 'zeros' }).apply(reshapedOutput); return tf.model({inputs: input, outputs: output}); } ``` ## 7. Implementing Memory Distillation Let's add a memory distillation mechanism to extract essential information from related memories: ```typescript public distillMemories(similarMemories: tf.Tensor2D[]): tf.Tensor2D { return tf.tidy(() => { if (similarMemories.length === 0) { return tf.zeros([1, this.config.memoryDim]); } if (similarMemories.length === 1) { return similarMemories[0]; } // Stack memories const stacked = tf.concat(similarMemories, 0); // Compute self-attention to find relationships const attention = this.computeMemoryAttention(stacked); // Apply attention to create distilled representation const distilled = tf.matMul(attention.scores, stacked); // Add residual connection const enhanced = tf.add(distilled, tf.mean(stacked, 0, true)); // Apply final projection return tf.matMul( enhanced, tf.variable(tf.randomNormal([this.config.memoryDim, this.config.memoryDim])) ); }); } // Add memory distillation to recall process public async recallAndDistill(query: string, topK = 5): Promise<tf.Tensor2D> { const memories = await this.recallMemory(query, topK); return this.distillMemories(memories); } ``` ## 8. Implementing Quantization Support Let's add quantization support for memory vectors to reduce memory usage: ```typescript // Add quantization utilities class MemoryQuantizer { private min: number = 0; private max: number = 0; private scale: number = 1; private zeroPoint: number = 0; public quantize(tensor: tf.Tensor): Int8Array { return tf.tidy(() => { // Find min and max values const minMax = tf.moments(tensor, [0, 1]); this.min = minMax.mean.sub(minMax.variance.sqrt().mul(3)).dataSync()[0]; this.max = minMax.mean.add(minMax.variance.sqrt().mul(3)).dataSync()[0]; // Calculate scale and zero point this.scale = (this.max - this.min) / 255; this.zeroPoint = Math.round(128 - this.min / this.scale); // Quantize const quantized = tensor.sub(tf.scalar(this.min)) .div(tf.scalar(this.scale)) .add(tf.scalar(this.zeroPoint)) .clipByValue(0, 255) .round() .cast('int32'); // Convert to Int8Array const quantizedData = new Int8Array(quantized.dataSync()); return quantizedData; }); } public dequantize(quantizedData: Int8Array, shape: number[]): tf.Tensor { return tf.tidy(() => { // Create tensor from Int8Array const quantizedTensor = tf.tensor(Array.from(quantizedData), shape, 'int32'); // Dequantize return quantizedTensor.sub(tf.scalar(this.zeroPoint)) .mul(tf.scalar(this.scale)) .add(tf.scalar(this.min)); }); } public getQuantizationParams(): { min: number; max: number; scale: number; zeroPoint: number } { return { min: this.min, max: this.max, scale: this.scale, zeroPoint: this.zeroPoint }; } } // Add quantized memory state interface IQuantizedMemoryState { shortTermQuantized: Int8Array; longTermQuantized: Int8Array; metaQuantized: Int8Array; shortTermShape: number[]; longTermShape: number[]; metaShape: number[]; quantizer: MemoryQuantizer; timestamps: number[]; accessCounts: number[]; surpriseHistory: number[]; } // Add methods to quantize and dequantize memory public quantizeMemory(): IQuantizedMemoryState { const quantizer = new MemoryQuantizer(); const shortTermQuantized = quantizer.quantize(this.memoryState.shortTerm); const longTermQuantized = quantizer.quantize(this.memoryState.longTerm); const metaQuantized = quantizer.quantize(this.memoryState.meta); return { shortTermQuantized, longTermQuantized, metaQuantized, shortTermShape: this.memoryState.shortTerm.shape, longTermShape: this.memoryState.longTerm.shape, metaShape: this.memoryState.meta.shape, quantizer, timestamps: Array. Continuing with the implementation of quantization support for memory vectors: ```typescript // Add methods to quantize and dequantize memory public quantizeMemory(): IQuantizedMemoryState { const quantizer = new MemoryQuantizer(); const shortTermQuantized = quantizer.quantize(this.memoryState.shortTerm); const longTermQuantized = quantizer.quantize(this.memoryState.longTerm); const metaQuantized = quantizer.quantize(this.memoryState.meta); return { shortTermQuantized, longTermQuantized, metaQuantized, shortTermShape: this.memoryState.shortTerm.shape, longTermShape: this.memoryState.longTerm.shape, metaShape: this.memoryState.meta.shape, quantizer, timestamps: Array.from(this.memoryState.timestamps.dataSync()), accessCounts: Array.from(this.memoryState.accessCounts.dataSync()), surpriseHistory: Array.from(this.memoryState.surpriseHistory.dataSync()) }; } public dequantizeMemory(quantizedState: IQuantizedMemoryState): IMemoryState { const shortTerm = quantizedState.quantizer.dequantize( quantizedState.shortTermQuantized, quantizedState.shortTermShape ); const longTerm = quantizedState.quantizer.dequantize( quantizedState.longTermQuantized, quantizedState.longTermShape ); const meta = quantizedState.quantizer.dequantize( quantizedState.metaQuantized, quantizedState.metaShape ); return { shortTerm, longTerm, meta, timestamps: tf.tensor1d(quantizedState.timestamps), accessCounts: tf.tensor1d(quantizedState.accessCounts), surpriseHistory: tf.tensor1d(quantizedState.surpriseHistory) }; } ``` ## 9. Implementing Contrastive Learning Let's add contrastive learning for improved similarity calculations: ```typescript public contrastiveLoss(anchor: tf.Tensor2D, positive: tf.Tensor2D, negative: tf.Tensor2D, margin: number = 0.5): tf.Scalar { return tf.tidy(() => { // Compute distances const posDistance = tf.sum(tf.square(tf.sub(anchor, positive)), -1); const negDistance = tf.sum(tf.square(tf.sub(anchor, negative)), -1); // Compute triplet loss const loss = tf.maximum( tf.add(tf.sub(posDistance, negDistance), tf.scalar(margin)), tf.scalar(0) ); return tf.mean(loss) as tf.Scalar; }); } public async trainWithContrastiveLearning( anchorText: string, positiveText: string, negativeText: string ): Promise<number> { const anchor = await this.encodeText(anchorText); const positive = await this.encodeText(positiveText); const negative = await this.encodeText(negativeText); const variables = this.transformerStack.flatMap(layer => layer.getWeights()) .concat(this.memoryProjector.getWeights()) .concat(this.similarityNetwork.getWeights()) .map(w => tf.variable(w)) as tf.Variable[]; const { value, grads } = this.optimizer.computeGradients(() => { return this.contrastiveLoss( anchor.reshape([1, -1]) as tf.Tensor2D, positive.reshape([1, -1]) as tf.Tensor2D, negative.reshape([1, -1]) as tf.Tensor2D ); }, variables); this.optimizer.applyGradients(grads); return value.dataSync()[0]; } ``` ## 10. Implementing Adaptive Computation Time Let's add adaptive computation time to dynamically adjust computational depth: ```typescript interface IACTConfig { maxPonderSteps: number; ponderCost: number; } private computeWithACT(input: tf.Tensor2D, actConfig: IACTConfig = { maxPonderSteps: 10, ponderCost: 0.01 }): tf.Tensor2D { return tf.tidy(() => { let state = input; let remainders = tf.zeros([input.shape[0], 1]); let updates = tf.zeros([input.shape[0], 1]); let halting = tf.zeros([input.shape[0], 1]); // ACT controller network const haltingNetwork = tf.sequential({ layers: [ tf.layers.dense({ units: this.config.hiddenDim / 2, inputShape: [this.config.hiddenDim], activation: 'relu' }), tf.layers.dense({ units: 1, activation: 'sigmoid' }) ] }); // Iterate through ponder steps for (let step = 0; step < actConfig.maxPonderSteps; step++) { // Compute halting probability const p = haltingNetwork.predict(state) as tf.Tensor2D; // Compute whether to halt const notHalted = tf.sub(tf.onesLike(halting), halting); const newHalted = tf.mul(notHalted, tf.greaterEqual(tf.add(halting, p), tf.scalar(1 - 1e-5))); const stillRunning = tf.sub(notHalted, newHalted); // Update halting state halting = tf.add(halting, tf.mul(p, stillRunning)); // Compute remainders and updates remainders = tf.add(remainders, tf.mul(newHalted, tf.sub(tf.scalar(1), halting))); updates = tf.add(updates, tf.mul(stillRunning, p)); // Apply transformer layer const newState = this.transformerStack[Math.min(step, this.transformerStack.length - 1)] .apply(state) as tf.Tensor2D; // Update state with weighted new state const updateWeight = tf.concat([ tf.mul(newHalted, tf.sub(tf.scalar(1), remainders)), updates ], 1); state = tf.add( state, tf.mul(tf.sub(newState, state), updateWeight) ); // Check if all examples have halted if (tf.sum(stillRunning).dataSync()[0] < 0.01) { break; } } // Add ponder cost const ponderCost = tf.mul( tf.add(remainders, updates), tf.scalar(actConfig.ponderCost) ); return state; }); } ``` ## 11. Implementing Improved Memory Pruning Strategy Let's implement a more sophisticated pruning strategy based on information gain: ```typescript public pruneMemoryByInformationGain(threshold: number = 0.1): void { tf.tidy(() => { // Compute pairwise similarities const similarities = tf.matMul( this.memoryState.shortTerm, this.memoryState.shortTerm.transpose() ); // Compute information gain for each memory const informationGain = tf.tidy(() => { // Compute entropy of each memory const entropy = tf.mul( this.memoryState.surpriseHistory, tf.log(tf.add(this.memoryState.accessCounts, 1)) ); // Compute redundancy based on similarities const redundancy = tf.mean(similarities, 1); // Information gain = entropy - redundancy return tf.sub(entropy, redundancy); }); // Find memories with high information gain const { values, indices } = tf.topk( informationGain, Math.floor(this.memoryState.shortTerm.shape[0] * (1 - threshold)) ); // Keep only high information gain memories this.memoryState.shortTerm = tf.gather(this.memoryState.shortTerm, indices) as tf.Tensor2D; this.memoryState.longTerm = tf.gather(this.memoryState.longTerm, indices) as tf.Tensor2D; this.memoryState.meta = tf.gather(this.memoryState.meta, indices) as tf.Tensor2D; this.memoryState.timestamps = tf.gather(this.memoryState.timestamps, indices) as tf.Tensor1D; this.memoryState.accessCounts = tf.gather(this.memoryState.accessCounts, indices) as tf.Tensor1D; this.memoryState.surpriseHistory = tf.gather(this.memoryState.surpriseHistory, indices) as tf.Tensor1D; console.log(`Pruned memory to ${this.memoryState.shortTerm.shape[0]} entries based on information gain`); }); } ``` ## 12. Implementing Episodic/Semantic Memory Distinction Let's add a distinction between episodic and semantic memory: ```typescript // Extend memory state interface interface IExtendedMemoryState extends IMemoryState { episodicMemory: tf.Tensor2D; semanticMemory: tf.Tensor2D; episodicTimestamps: tf.Tensor1D; semanticConfidence: tf.Tensor1D; } // Initialize extended memory state private initializeExtendedMemoryState(): void { tf.engine().startScope(); try { const initializer = tf.initializers.glorotNormal({}); // Initialize with proper memory management const episodicSize = Math.floor(this.config.memorySlots * 0.4); // 40% for episodic const semanticSize = Math.floor(this.config.memorySlots * 0.6); // 60% for semantic const episodicMemory = tf.keep(initializer.apply([episodicSize, this.config.memoryDim]) as tf.Tensor2D); const semanticMemory = tf.keep(initializer.apply([semanticSize, this.config.memoryDim]) as tf.Tensor2D); // Clean up old state if it exists if (this.memoryState) { Object.values(this.memoryState).forEach(tensor => { if (tensor && !tensor.isDisposed) { tensor.dispose(); } }); } // Create new state with proper tensor management this.memoryState = { shortTerm: tf.keep(tf.concat([episodicMemory, semanticMemory], 0)), longTerm: tf.keep(tf.zeros([this.config.memorySlots, this.config.memoryDim])), meta: tf.keep(tf.zeros([this.config.memorySlots, this.config.memoryDim])), timestamps: tf.keep(tf.zeros([this.config.memorySlots])), accessCounts: tf.keep(tf.zeros([this.config.memorySlots])), surpriseHistory: tf.keep(tf.zeros([this.config.memorySlots])), // Extended memory components episodicMemory: episodicMemory, semanticMemory: semanticMemory, episodicTimestamps: tf.keep(tf.zeros([episodicSize])), semanticConfidence: tf.keep(tf.zeros([semanticSize])) } as IExtendedMemoryState; } catch (error) { console.error('Error initializing extended memory state:', error); throw error; } finally { tf.engine().endScope(); } } // Store memory with episodic/semantic distinction public async storeMemoryWithType(text: string, isEpisodic: boolean = true): Promise<void> { const embedding = await this.encodeText(text); const extendedState = this.memoryState as IExtendedMemoryState; if (isEpisodic) { // Store as episodic memory with timestamp tf.tidy(() => { // Find least accessed episodic memory const { indices } = tf.topk( tf.neg(extendedState.episodicTimestamps), 1 ); // Replace it with new memory const index = indices.dataSync()[0]; const updatedMemory = extendedState.episodicMemory.clone(); const update = embedding.reshape([1, -1]); // Use scatter update const indices1D = tf.tensor1d([index], 'int32'); extendedState.episodicMemory.dispose(); extendedState.episodicMemory = tf.tensor2d( updatedMemory.arraySync().map((row, i) => i === index ? update.arraySync()[0] : row) ); // Update timestamp const updatedTimestamps = extendedState.episodicTimestamps.arraySync(); updatedTimestamps[index] = Date.now(); extendedState.episodicTimestamps.dispose(); extendedState.episodicTimestamps = tf.tensor1d(updatedTimestamps); }); } else { // Store as semantic memory with confidence tf.tidy(() => { // Compute similarity to existing semantic memories const similarities = tf.matMul( extendedState.semanticMemory, embedding.reshape([1, -1]).transpose() ).squeeze(); // Find most similar memory const { values, indices } = tf.topk(similarities, 1); const similarity = values.dataSync()[0]; const index = indices.dataSync()[0]; if (similarity > this.config.similarityThreshold) { // Update existing memory with weighted average const existingMemory = extendedState.semanticMemory.slice([index, 0], [1, -1]); const confidence = extendedState.semanticConfidence.slice([index], [1]); // Compute weighted average const newConfidence = tf.add(confidence, 1); const alpha = tf.div(tf.scalar(1), newConfidence); const updatedMemory = tf.add( tf.mul(existingMemory, tf.sub(tf.scalar(1), alpha)), tf.mul(embedding.reshape([1, -1]), alpha) ); // Update memory and confidence const semanticArray = extendedState.semanticMemory.arraySync(); semanticArray[index] = updatedMemory.arraySync()[0]; extendedState.semanticMemory.dispose(); extendedState.semanticMemory = tf.tensor2d(semanticArray); const confidenceArray = extendedState.semanticConfidence.arraySync(); confidenceArray[index] = newConfidence.dataSync()[0]; extendedState.semanticConfidence.dispose(); extendedState.semanticConfidence = tf.tensor1d(confidenceArray); } else { // Find least confident memory to replace const { indices: leastConfidentIndices } = tf.topk( tf.neg(extendedState.semanticConfidence), 1 ); // Replace it with new memory const replaceIndex = leastConfidentIndices.dataSync()[0]; const semanticArray = extendedState.semanticMemory.arraySync(); semanticArray[replaceIndex] = embedding.arraySync(); extendedState.semanticMemory.dispose(); extendedState.semanticMemory = tf.tensor2d(semanticArray); // Reset confidence const confidenceArray = extendedState.semanticConfidence.arraySync(); confidenceArray[replaceIndex] = 1; extendedState.semanticConfidence.dispose(); extendedState.semanticConfidence = tf.tensor1d(confidenceArray); } }); } // Update combined memory extendedState.shortTerm.dispose(); extendedState.shortTerm = tf.concat([ extendedState.episodicMemory, extendedState.semanticMemory ], 0); } // Recall with episodic/semantic distinction public async recallMemoryByType( query: string, type: 'episodic' | 'semantic' | 'both' = 'both', topK = 5 ): Promise<tf.Tensor2D[]> { const queryEmbedding = await this.encodeText(query); const extendedState = this.memoryState as IExtendedMemoryState; return tf.tidy(() => { let memoryToSearch: tf.Tensor2D; if (type === 'episodic') { memoryToSearch = extendedState.episodicMemory; } else if (type === 'semantic') { memoryToSearch = extendedState.semanticMemory; } else { memoryToSearch = extendedState.shortTerm; } // Compute similarities const similarities = tf.matMul( memoryToSearch, queryEmbedding.reshape([1, -1]).transpose() ).squeeze(); // Find top-k similar memories const { indices } = tf.topk(similarities, Math.min(topK, memoryToSearch.shape[0])); const indicesArray = indices.arraySync() as number[]; // Return memory vectors return indicesArray.map(i => memoryToSearch.slice([i, 0], [1, -1]) as tf.Tensor2D ); }); } ``` ## 13. Implementing JIT Compilation Support Let's add JIT compilation support for critical path operations: ```typescript // Add JIT compilation for critical operations private enableJIT(): void { if (typeof tf.env().getFlags().WEBGL_CPU_FORWARD === 'boolean') { // Enable JIT compilation for WebGL backend tf.env().set('WEBGL_CPU_FORWARD', false); tf.env().set('WEBGL_PACK', true); tf.env().set('WEBGL_FORCE_F16_TEXTURES', true); tf.env().set('WEBGL_CONV_IM2COL', true); tf.env().set('WEBGL_MAX_TEXTURE_SIZE', 16384); tf.env().set('WEBGL_FORCE_NATIVE_TEXTURE_CREATION', true); console.log('Enabled WebGL optimizations for JIT compilation'); } // Create JIT-compiled versions of critical functions this.jitCompiledForward = tf.customGrad((x: tf.Tensor2D, save: Function) => { // Forward pass with saved activations for backprop const activations: tf.Tensor[] = []; let current = x; for (const layer of this.transformerStack) { current = layer.apply(current) as tf.Tensor2D; activations.push(current.clone()); } // Save activations for gradient computation save(activations); // Return forward result and gradient function return { value: current, gradFunc: (dy: tf.Tensor2D, saved: tf.Tensor[]) => { // Backpropagate through layers in reverse let gradient = dy; for (let i = this.transformerStack.length - 1; i >= 0; i--) { const layerGrad = this.computeLayerGradient( gradient, saved[i], this.transformerStack[i] ); gradient = layerGrad; } return gradient; } }; }); } // Helper for computing layer gradients private computeLayerGradient( outputGrad: tf.Tensor2D, activation: tf.Tensor, layer: tf.LayersModel ): tf.Tensor2D { return tf.tidy(() => { // This is a simplified gradient computation // In a real implementation, this would compute proper backpropagation // through the specific layer architecture const weights = layer.getWeights(); return tf.matMul(outputGrad, weights[0].transpose()) as tf.Tensor2D; }); } // Use JIT-compiled forward pass public forwardJIT(x: ITensor): ITensor { const input = unwrapTensor(x) as tf.Tensor2D; // Use JIT-compiled forward pass const output = this.jitCompiledForward(input); return wrapTensor(output); } ``` ## 14. Implementing Sparse Attention Patterns Let's add sparse attention patterns to reduce computation: ```typescript private computeSparseAttention(query: tf.Tensor2D, keys: tf.Tensor2D, values: tf.Tensor2D, sparsity: number = 0.9): tf.Tensor2D { return tf.tidy(() => { // Compute full attention scores const scores = tf.matMul(query, keys.transpose()); // Keep only top (1-sparsity)% of attention weights const threshold = tf.topk( tf.reshape(scores, [-1]), Math.floor(scores.size * (1 - sparsity)) ).values.min(); // Create sparse mask const mask = tf.greater(scores, threshold); // Apply mask to scores const maskedScores = tf.mul(scores, tf.cast(mask, 'float32')); // Normalize masked scores const normalizedScores = tf.div( maskedScores, tf.sum(maskedScores, -1, true).add(tf.scalar(1e-10)) ); // Apply attention return tf.matMul(normalizedScores, values); }); } // Update memory attention to use sparse attention private computeMemoryAttention(query: tf.Tensor2D): IAttentionBlock { return tf.tidy(() => { const weights = this.similarityNetwork.getWeights(); const keys = SafeTensorOps.matMul(this.memoryState.shortTerm, weights[0] as tf.Tensor2D); const values = SafeTensorOps.matMul(this.memoryState.shortTerm, weights[1] as tf.Tensor2D); // Use sparse attention for efficiency const attended = this.computeSparseAttention(query, keys, values, 0.8); return { keys, values: attended, scores: tf.softmax(SafeTensorOps.matMul(query, keys.transpose())) }; }); } ``` ## 15. Implementing Telemetry for Performance Monitoring Let's add built-in telemetry for performance monitoring: ```typescript interface ITelemetryData { timestamp: number; operation: string; durationMs: number; memoryUsage: { numTensors: number; numBytes: number; unreliable: boolean; }; metrics?: Record<string, number>; } class ModelTelemetry { private static instance: ModelTelemetry; private telemetryData: ITelemetryData[] = []; private maxEntries: number = 1000; private enabled: boolean = true; private constructor() {} public static getInstance(): ModelTelemetry { if (!ModelTelemetry.instance) { ModelTelemetry.instance = new ModelTelemetry(); } return ModelTelemetry.instance; } public recordOperation(operation: string, metrics?: Record<string, number>): () => void { if (!this.enabled) return () => {}; const startTime = performance.now(); const startMemory = tf.memory(); return () => { const endTime = performance.now(); const endMemory = tf.memory(); const telemetryEntry: ITelemetryData = { timestamp: Date.now(), operation, durationMs: endTime - startTime, memoryUsage: { numTensors: endMemory.numTensors, numBytes: endMemory.numBytes, unreliable: endMemory.unreliable }, metrics }; this.telemetryData.push(telemetryEntry); // Trim if needed if (this.telemetryData.length > this.maxEntries) { this.telemetryData = this.telemetryData.slice(-this.maxEntries); } }; } public getMetrics(): ITelemetryData[] { return [...this.telemetryData]; } public getAverageMetrics(operation: string, lastN: number = 10): Record<string, number> { const relevantEntries = this.telemetryData .filter(entry => entry.operation === operation) .slice(-lastN); if (relevantEntries.length === 0) { return {}; } const avgDuration = relevantEntries.reduce((sum, entry) => sum + entry.durationMs, 0) / relevantEntries.length; const avgTensors = relevantEntries.reduce((sum, entry) => sum + entry.memoryUsage.numTensors, 0) / relevantEntries.length; const avgBytes = relevantEntries.reduce((sum, entry) => sum + entry.memoryUsage.numBytes, 0) / relevantEntries.length; const result: Record<string, number> = { avgDurationMs: avgDuration, avgTensors: avgTensors, avgBytes: avgBytes }; // Add custom metrics if they exist if (relevantEntries[0].metrics) { Object.keys(relevantEntries[0].metrics!).forEach(metricKey => { result[`avg${metricKey}`] = relevantEntries.reduce( (sum, entry) => sum + (entry.metrics?.[metricKey] || 0), 0 ) / relevantEntries.length; }); } return result; } public enable(): void { this.enabled = true; } public disable(): void { this.enabled = false; } public clear(): void { this.telemetryData = []; } } // Use telemetry in model operations public forward(x: ITensor, memoryState: IMemoryState): { predicted: ITensor; memoryUpdate: IMemoryUpdateResult } { const telemetry = ModelTelemetry.getInstance(); const endTelemetry = telemetry.recordOperation('forward'); try { // Existing forward implementation const input = unwrapTensor(x) as tf.Tensor2D; let transformed = input; const tensorsToDispose: tf.Tensor[] = []; // Process through transformer stack for (const layer of this.transformerStack) { const newTransformed = layer.apply(transformed) as tf.Tensor2D; if (transformed !== input) { tensorsToDispose.push(transformed); } transformed = newTransformed; } // Memory attention mechanisms const memoryQuery = this.memoryProjector.apply(transformed) as tf.Tensor2D; tensorsToDispose.push(memoryQuery); const attention = this.computeMemoryAttention(memoryQuery); tensorsToDispose.push(attention.keys, attention.values, attention.scores); // Surprise-gated memory update const surprise = this.computeSurprise(transformed, attention.values as tf.Tensor2D); tensorsToDispose.push(surprise.immediate, surprise.accumulated); const updateGate = tf.sigmoid(tf.mul(surprise.immediate, 0.5)); tensorsToDispose.push(updateGate); const newShortTerm = tf.add( tf.mul(memoryState.shortTerm, tf.sub(1, updateGate)), tf.mul(attention.values, updateGate) ) as tf.Tensor2D; const newState = { ...memoryState, shortTerm: newShortTerm }; return { predicted: wrapTensor(transformed), memoryUpdate: { newState, attention, surprise } }; } finally { endTelemetry(); } } ``` These implementations significantly enhance the TitanMemoryModel with modern architectural improvements, efficiency optimizations, and advanced features. The model now has: 1. Better positional embeddings with RoPE 2. More efficient attention with Multi-Query Attention 3. Hierarchical memory organization 4. Improved tokenization with BPE 5. Faster retrieval with approximate nearest neighbors 6. Enhanced neural components with GLU/SwiGLU 7. Memory distillation capabilities 8. Reduced memory usage with quantization 9. Better similarity learning with contrastive loss 10. Dynamic computation with ACT 11. Smarter memory management with information gain pruning 12. Episodic/semantic memory distinction 13. Performance improvements with JIT compilation 14. Computational efficiency with sparse attention 15. Performance monitoring with telemetry These enhancements make the model more effective at storing and retrieving memories while being more computationally efficient.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/henryhawke/mcp-titan'

If you have feedback or need assistance with the MCP directory API, please join our Discord server